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1.0 INTRODUCTION 

This final report summarizes the results of the "Contamination 

Assessment for OSSA space station IOC Payloads", purchase order #H 132929 

and P.O. 135068. The duration of the study was from 6 May 86 through 24 

November 86. 

The funding originated from the Office of space science and 

Applications, CODE E. Figure 1.1 shows the organization flow for this 

study . 
1.1 

1 . 2  

OBJECTIVES 

There were two main initial objectives. 

o Provide realistic contamination requirements for space station 

attached payloads, serviced payloads and platforms. 

Determine unknowns or major impacts requiring further 

assessment. 

o 

SCOPE 

- ine iniLlal scope rf t h e  study was ambitious and is graphically 

shown in Figure 1.2. The major emphasis was decided to be the attached 

payloads and a cursory look at free fliers, platforms and the interior 

payloads. 

1.3 APPROACH 

The initial approach was to: 

o Review data sources 

- OSSA Planners 
- Principal Investigators 
- MSFC 
- GSFC 
- LARC 
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1.4 

- AMES 

o 

o Visit P.I.'S 

o Assess contamination sources 

o Compile results 

Utilize request for information forms 

Figure 1.3 illustrates the flow in the data acquisition process. 

SUMMARY 

The initial objectives of this study were successfully completed. 

The contamination requirements in JSC 30000 section 3 were updated 

and presented at a working meeting, 13-14 Aug. '86, of the Contamination 

Control Working Group headed by Dr. Lubert Leger. At this meeting an 

agreed upon set of requirements was arrived at by all attendees. This 

included, GSFC, MSFC, JSC, LeRC, OSSA CODE E, JPL, NRC CANADA, NASDA JAPAN, 

ESA, Science and Engineering Associates, Martin Marietta and McDonnell 

Douglas. Major improvements from a user viewpoint were achieved at the 

meeting. 

Action items occurred during the course of the study which aided 

in expanding and detailing the second objective. These action items 

included venting and leakage issues, ambient atmosphere effects and the 

impact of transverse boom versus dual keel. 

These actions were summarized and presented at a series of 

meetings. Those of note were: 

o NASA Headquarters, 11 August 1986, on requirements and 

venting issues in preparation of the CCWG meeting at J S C .  

o NASA Headquarters, 17 September 1986, on transverse boom 

versus dual keel impact on contamination. 
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Attendees from NASA/MATSCO were: 

Richard Sade 

John Hilchey 

Arnold Nicogossian 

Mike Davarian 

Gary Musgrave 

Larry Chambers 

o NASA Headquarters, 22 September 1986, on transverse boom 

versus dual keel impact on contamination. 

Attendees from NASA/MATSCO were: 

Dick Halpern 

Mike Davarian 

Sam Keller 

Gary Musgrave 

David Black 

Fritz Von Bun 

Ray Gause 

Lubert Leger 

Horst Ehlers 

Ed Reeves 

Mark Sistilli 

Larry Chambers 

The approach to mail out request for information forms met w i t h  

partial success. The response was limited. It became clear that 

acceptable levels of contaminants is not well known or understood by the 

payload community. 
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As a result of this study future plans are underway to accurately 

determine background brightness levels, absorption losses, surface 

reflectance and transmission changes. By comparing these to a space 

station environment and payload allowable levels the impact of 

contamination can be assessed. 
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2 .  o . CONTAMINATION DESCRIPTION - EXTERNAL 

This section presents the general types of contamination that can 

occur to familiarize the reader with the concepts discussed in the 

following sections. The contamination discussed here relates to external 

contamination that a payload experiences external to a spacecraft. Section 

2 . 8  presents data and algorithms to aid in estimating the different levels 

of contaminants. 

Figure 2.1 shows the key elements in performing a contamination 

For a given geometry there are 3 major elements required. These analysis. 

are source kinetics, transport mechanisms and degradation effects. 

2.1 DEFINITIONS 

The following definitions summarize the key concepts. Some of 

the more pertinent are discussed in more detail in the remaining portion of 

this section. 

o CONTAMINATION - Spacecraft or payload induced molecular or 

particulate environment that degrades or interferes with a measurement or 

degrades an operational or critical sensor surface that requires 

refurbishment before continued use. 

o LINE-OF-SIGHT - The viewing direction of a sensor or 

instrument relative to the space station or platform. 

o FIELD-OF-VIEW - The solid angle of the line-of-sight of a 

sensor or instrument. 

8 
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o OPERATIONAL SURFACE - Those surfaces that are not part of a 
sensor optical train that are required for nominal space station 

operations, including thermal control surfaces, solar array surfaces, and 

windows. 

o CRITICAL SURFACE - Those surfaces that are reqnired for 

successful operation of a sensor or instrument including optics, baffles, 

and sun shades. 

o COLUMN DENSITIES - The amount of mass or number of molecules 

per unit area along the field-of-view of a sensor, which can scatter, 

absorb, or reemit at the sensor operating wavelength. 

o RETURN FLUX - The return of emitted contaminant molecules 

back to spacecraft surfaces via collision interactions with the ambient 

atmosphere. 

o DEPOSITION - The accumulation of.molecular or particulate 

contaminants on a surface that changes the surface characteristics 

(transmittance, reflectance, conductivity, absorptivity, emissivity). 

0 RAM DENSITY - The pressure buildup of ambient and induced 

contaminant atmosphere on spacecraft surfaces facing the direction of 

motion as a result of orbital velocities exceeding ambient molecule thermal 

velocities. 

o SURFACE GLOW - The Broad spectral emissions from gases 

interacting at or near ram facing surfaces. 

o FAR FIELD GLOW 'HALO' - The broad spectral emissions from 

gases upstream from ram facing surfaces and in the wake region of the 

spacecraft. 

o OUTGASSING - Molecular emissions that diffuse from the b u l k  

of a material. 

10 



o OFFGASSING - Molecular emissions of a highly volatile 

species that adsorb or absorb on or into the surface of a material prior to 

vacuum exposure. 

2 . 2  NUMBER COLUMN DENSITY 

The molecular species induced by the spacecraft, the payload 

itself or ambient atmosphere interactions that reach the field-of-view of 

an experiment, can cause degradation of the signal. The degradation effect 

is a function of the payload sensing wavelength, target strength, optical 

properties of the contaminant gas, orbital position and spatial/temporal 

uniformity requirements for the data acquisition techniques involved. 

The gases can either absorb, scatter or reemit at the sensor 

operating wavelength. Ions of these gases are also possible via ambient 

interaction or gas phase charge exchange mechanisms. 

These gases do not build up a static cloud. Instead the cloud is 

constantly added to by the sources, and dissipates very rapidly. Therefore 

only those sources continuous in nature will always be present. The types 

of sources that are continuous are leakage, ram pressure and outgassing. 

Sources such as vents, airlock operations and RCS thrusters will be 

transient in nature and will cause varying background levels. 

2 . 3  DIRECT FLUX/DEPOSITION 

Surfaces that see other surfaces can outgas directly onto these 

temperature of source 

a fraction of the outgassed flux can deposit and degrade the 

surfaces. 

and receiver, 

properties of the receiving surface. 

2.3.1 Ultra Violet Effects 

Depending on the source and the relative 

The presence of ultraviolet radiation can cause two major 

differences in the deposition assessment. 

11 



First it can photopolymerize the deposit on a surface so that it 

Usually the deposit changes toward a changes the character of the deposit. 

darker color and becomes much more tenacious . 

Secondly, the presence of W during flux of contaminants can 

cause the deposition rate to increase or cause deposition to occur when it 

normally would not. Testing has shown that with W present deposition can 

occur even though the receiver is at a higher temperature than the source. 

2 . 4  RETURN FLUX/DEPOSITION 

The return flux mechanism occurs via interactions of the 

contaminant with the incoming ambient atmosphere. Since the incoming 

ambient is a unidirectional, well collimated beam the amount of return flux 

is strongly dependent on the velocity vector relative to the receiving 

surface in question. Figure 2 . 2  schematically illustrates the condition 

for return flux. The field-of-view (solid angle of optical system sensing 

volume) also dictates the fraction of contaminants that can backscatter 

onto sensitive surfaces. 

The amount that can deposit is a function of the parent source 

material type and temperature, and the receiver temperature. W can play 

the same role as mentioned in section 2.3.1 above. 

2 .5  RAM PRESSURE 

For spacecraft in low earth orbits there is genuine reason for 

concern with regards to the contamination effects resulting from the 

ambient atmosphere. The ambient atmosphere is composed primarily of H, 0, 

02, N2, and He, at low orbital altitudes. As the spacecraft passes 

through the ambient atmosphere at orbital velocities, ambient molecules 

collide with RAM facing surfaces. these molecules are thermally 

accommodated on the spacecraft surfaces and reemitted with thermal 

Many of 

12 
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velocities as ambient species as well as ambient 

reemitted molecular species might include H, 0, 

OH. In addition to the reemitted ambient and ambient combinations, 

depending on the surface material, outgassed and erosion products may also 

leave the spacecraft surfaces. 

combination species. 

02, N2, NO2, NO and 

The 

Regardless of the source, molecules leaving the surface will tend 

to be scattered along the RAM direction vector by the free-streaming 

ambient and ambient scattered molecules. In the case of a surface oriented 

perpendicular to the RAM direction vector, the scattering distribution will 

be directed back towards the emitting surface. The backscattered molecules 

further decrease the expected mean-free path of the surface emitted 

molecules. RAM facing surfaces. 

The higher denskty region near RAM facing surfaces produces a contamination 

environment considerably different from what would be expected if only an 

undisturbed ambient atmosphere were considered. Many of the surface 

reemitted molecules may be ambient combinations such as NO2, and OH which 

are of more concern to W and IR instruments than the ambient molecular 

constituents in an uncombined form. Further more, slow moving outgassed 

and erosion products may become somewhat trapped in the higher density 

regions resulting in higher than expected contaminant level for some 

molecules. The complete ramifications of the density buildup (RAM 

pressure) are not fully understood at this time, but should be considered 

when determining the contamination environment. 

2.6  GLOW 

The result is a density buildup near the 

The glow of the space shuttle was first detected during the flight 

Although the shuttle glow was not specifically predicted it has 

to S m m ~ . ~ n d  

of STS-3. 

now been associated with other spacecraft glow which was shown 

14 



free flyer satellites such as Atmosphere and Dynamics Explorer [Torr et 

al., 1977; Torr, 1983; Yee and Abreu, 19831. Specific investigation into 

the shuttle glow began on STS-4 when a transmission grating was mounted in 

front of a photographic camera and several exposures were taken on-orbit to 

make preliminary spectral measurements of the spacecraft glow [Mende et 

al., 19831. Investigation into the glow phenomenon continued on STS-5,8,9, 

41D and finally 41G. 

The data gathered from the various flight experiments suggest the 

glow is a continuum (within 34A FWHM resolution) and extends 20cm out from 

the surface. The continuum shape (Fig. 2.6.1) is such that the peak is 

near 7000A decreasing to the blue and red. In addition to the spectral 

0 

1 I 1 / \  
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/' 
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FIGURE 2.6.1 GLOW SPECTRUM 
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data, other parameters were also investigated in an attempt to better 

characterize the glow phenomenon. 

Examination of the photographs from STS-3 showed that only those 

surfaces which were in the direction of the velocity vector exhibited glow. 

In an experiment on STS-5, it was verified that the glow intensity strongly 

depends on the attitude of the surface with respect to the velocity vector. 

In this experiment a full 360 roll was executed about the shuttle x-axis 

while the orbital velocity vector was in the shuttle x-y plane. During the 

experiment, photographs were taken of the tail section at 2-minute 

intervals to record the intensity of the glow on the tail surfaces (Fig 

2.6.2). 

Measurements by Yee and Abreu [1983] from atmosphere explorer data 

found that in the _altitude regime of the shuttle, the intensity of the 

spacecraft glow varied in the same manner as the atomic oxygen density. 

FIGURE 2.6.2 GLOW E ATTITUDE 
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Since the shuttle flights are essentially in circular orbits, measurements 

have been restricted to comparisons between one flight to the next. A good 

comparison is provided in Figure 2.6.3 A 6 B where STS-3 (A) and STS 

images are shown. 

(B) 
FIGURE 2.6.3 GLOW VS. ALTITUDE 

The image of STS-3 was taken at an altitude of 240 km and STS-5 at 305 km. 

Both images were taken with the same camera and lens. From the photographs 

one can see the glow is nearly the same. The difference in the two images 

was the exposure time, STS-3 was 10 seconds and STS-5 was 100 seconds. 

Corrections were made for the difference in exposure times and film 

reciprocity failure. These corrections allowed a ratio of 3.5 for the real 

intensities to be determined. The intensity data from these two photos 

shows a fairly good agreement with the scale height variation of 

atmospheric constituents. 

The dependence of the glow intensity on the nature of the 

spacecraft surface was investigated on STS-5 and 41D. For the experiment 

on STS-5, ten 4-inch wide material tapes were mounted on the remote 

manipulator system (RMS) arm. The materials used for this experiment were 

Kapton, aluminum, black chemglaze, aluminum and Kapton. A second set of 

samples were repeated in this order. Photographic images of the material 
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samples on the RMS arm were taken. Analysis of these images reveal the 

glow from the chemglaze was strongest with aluminum glowing the least. The 

experiment just described was repeated on STS-41D using nine different 

material samples. The materials chosen for this experiment were MgF2, 

2 3 0 6 ,  2302 overcoated with Si, 2 3 0 2 ,  polyethylene, 401-C10, carbon cloth, a 

chemical conversion film and anodized aluminum. Again these material 

samples were photographed with the same instrument as in STS-5. Analysis 

of the images reveal the glow from the 2 3 0 2  overcoated with Si was 

brightest and the polyethylene glowing the least. Table 2.6.1 shows the 

rest of the materials and their ranking (1 to 9 in order of  glow intensity, 

minimum to maximum, respectively). 

Table 2 . 6 . 1  RMS Arm Materials Ranking 

Mate r ial Rankinq 

MgF2 8 

2306 6 

2302 Overcoated with Si 9 

2 3 0 2  7 

Polyethylene 1 

401-C10 2 

Carbon Cloth 4 

Chemical Conversion Film 5 

Anodized A 1  3 

The success of these experiments was that it provided solid evidence that 

the observed glow is somehow dependent on the properties of the material 

surface. 
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To this point, the discussion has concentrated mainly on surface 

glow observations. There is, however, another aspect of the glow that has 

been overlooked by most glow investigators, that being the far-field glow. 

During the STS-9 mission, Fred C. Witteborn and colleagues from the Ames 

Research Center conducted observations of the shuttle using the Advanced 

Research Projects Agency's Maui Optical Station (AMOS) tracking facility. 

The observations were made using a sensitive photometer in two infrared 

bands, the H-band centered at a wavelength of 1 . 6 ~  and the K-band centered 

at 2.3~. The results of  the tracking of STS-9 are summarized in Table 

2.6.2. 

Table 2.6.2 Shuttle Glow in the IR 

Wavelength Best measured . Flux density minus Estimated Zodiacal 

f l u x  d e n s i t y  s c a t t e r e d  i r r a d i a n c e  i r r a d i a n c e  

-2 -1 r a d i a t i o n  of S h u t t l e  W cm p 
P 

-1 -1 
glow P .. -2 -1 w c m  p 

-2 -1 Wcm p 
-1 sr 

1.6 
2.3 

2. 2x10-16 2 .  2x1o-l6 6. O X ~ O - ~  2.4~10-l~ 
1 .09x10-16 N e g l i g i b l e  N e g l i g i b l e  7 .Ox1O-l2 

The emitted flu from STS-9 at 1 . 6 ~  is much higher than can be accounted 

for by the shuttle's thermal radiation from the 

earth or its atmosphere, It is concluded by Witteborn that this excess IR 

environment around the shuttle would be 200 times brighter than the 

zodiacal background at an altitude of 400 km. The spatial extent of the IR 

glow at 1.61.'. shows it to be tens of meters away from the shuttle. 

or by scattered radiation 

19 



2 . 7  ATOMIC OXYGEN EROSION 

From the earliest Shuttle flights it became apparent that many 

materials exposed to the environment had undergone various changes. The 

most dramatic effects were seen in Kapton which showed severe mass loss and 

loss of surface gloss. A l s o ,  painted surfaces showed apparent aging 

effects. To explain these observations, it has been hypothesized that 

atomic oxygen which is the predominate species in low earth orbit (LEO), is 

somehow reacting with the materials to cause these results. The important 

factor in  the reaction process comes from the collisional energy (5eV) 

of the atomic oxygen which is derived from the orbital velocity of the 

vehicle (8km/sec.). 

The results from the first Shuttle flight prompted the need f o r  

further investigation into this phenomenon. Material samples were flown on 

STS-3, 4 and 5 in an attempt to further evaluate the effects of atomic 

oxygen on materials. Table 2.7.1 summarizes the results of these 

experiments. The reaction efficiency ( R . E . )  shown in Table 2 . 7 . 1  is 

derived by normalizing the thickness loss induced by the calculated atomic 

oxygen fluence to yield R . E . -  xcm 3 /oxygen atom. 

Matrrlal 
Kapton TV Blankrt 
Kapton. O S - 1  Blanket 
Kapton MLI Blankrt 
Kapton 
Kapton 
Kapton 
Mylar 
Taflon FEP 7 TFE 
AllTdlon FEP 

Kapton 
Kapton 
Kapton 
Kapton, Black 
Mylar 
Mylar 
Mylar 
Tedlar, Clear 
Tedlar, Whit. 
Teflon FEP 61 TFE 
Kapton ICoatrd) 

DC1-2755 
1-650 

Table 2.7.1 STS-3, 4 and 5 Material Sample Results. 

Reaction Efficiency 
102' cm3lAtom Thl&n.a. prn Thlcknon Flurncr 

(a) Lon,pm 1020 Atomslcm~ (b) 

12.7 4.4 2.16 2 .O 
25.4 5.5 2.5 

7 .S 1.8 0.85 2.8 
12.7 1.6 2.7 
25.4 1 .I 2 .e 
12.7 1 .a 2.8 
12.7 0.07 0.1 

12.7 1 .so 1 .o 1.5 
25.4 2.18 2 .2 
50.8 2.79 2.8 
25.4 1.35 1.4 
12.7 2.16 2.2 
25.1 1 .83 1 .8 
50.8 1 .so 1.5 
12.7 1.30 1.3 
25.4 0.41 0.4 
12.7 0.2 0 .2 

12.7 1Kaptonl 0.2 0.2 
12.7 (Kipton) 0.2 0.2 

- 
Shuttl. 
Flight 

STS3 

STS4 
Witness 
Sompla 

- 
- 

la) Note: Film Thicknesses of 12.7. 25.4, md50.8 prn corroypond to 0.5, 1.0 and 2.0 mil% r~Sp.~tiVOly. 
Ibl Most probablr rrror Is +30 to 40%. 
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Additional material samples were flown on STS-8 and the results are shown 

in Table 2.7.2. 

Table 2.7.2 STS-8 Material Sample Results. 

M a t r i d  

Kapton 

Mylar A 

Mylar A 

Mylar D 

C l r r  Todkr 
Polyothylorn 

Toflon TFE 
Kapton F 

Thicknm, 

(MILS) 

12.7 (0.5) 

25.4 (1.0) 

5 0 3  (2.0) 

12.7 (0.5) 
40.6 (1.6) 
50.8 (2.0) 

12.7 ( 0 5 )  
20.3 (0.8) 
12.7 (0.5) 
30.5 (1.2) 

gm 
Exposod 
Si.. 

Air 
Roll 

Air 
Roll 
Air 
Roll 

Air 
Air 
A ir 
Roll 
Air 
N I A  

Air 

N I A  

Strip S in  
121OC - 
9 .5 

11.8 
9.8 
9.9 

11.1 
11.1 
12.7 
12.1 
9.9 

11.0 
10.9 

: 0 2  

le1 

6 5 O C  
10.5 
10.3 
10.7 
9.0 

10.6 
11.1 

12.3 
11.9 
10.2 
10.4 
11.5 

<02  

Dire Sampler AvWaQOC i 

I 12.0 

! eact ion 
:fficiency 
0 - 1 4  cm3latom 

3.0 

3.6 
3.4 
3.0 

3.2 
3.3 

c0.05 
:O.OS 

The observed "aging" of paints detected on STS-1 through STS-4 

were extended on later flights with measurements of quantitative optical 

changes. The changes in emissivity ( e )  and absorptance (oc) were measured 

post-flight and are shown in Table 2.7.3. 
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Table  2 . 7 . 3  STS 1-4 k t e r i a l  Saiilple R e s u l t s  

Paint & P a  
A-276 Urethane, White +0.03 -0.0007 
A-276 + 5% Ir ( Ir  - Irganox) +OB2 +0.0007 
A-276 + 5% Ir + 2.5% Ti292 IT1 Tinuvin) +0.02 +0.016 

V-200 Urrthanr M.02 +0.02 

RTV-615 Siliconr + Ti02 - 0.01 +0.0001 
ATV-615 +Carbon Black 0 0 
Urrthrnr + Crrbon Black M.05 +0.0053 

Flamr Master S1023 -0.02 -0.02 
Chemglrzr 2306 -0.02 +0.034 

401-C10 (Blrck) M.005 
2-853 (YoIIow) - 0.034 
GSFC (Grrm) - 0.002 
2306 (Black) +O.O28 
2302 (Glossy Black) +0.043 
2302 + 01 650 Owrcort - 0.001 
2302 + R N  670 Owrcort - 0.004 
A276 - 0.002 
A276 + 01 650 Ovorcoat +0.002 
Elactrodrg 402 I Ag/Siliconr) 
Eloetrodrg 106 (Gr/Epoxy) 
Aqurdrg E (GrlBindrr) 

A-2767 + 5% Ir + 2.5% Ti900 +OB2 -0.006 

V-200 + 5% Ir + 2.5% Ti292 + 2.55% Ti900 +0.02 + 0.097 
V.200 + 2.5% Ir + 5% Ti292 +0.02 +0.057 

Other Comments 

Reslstanee Increase x2 per Unit Area 
Resistrncr Increase x3 oar Unit Area 
11.39b W t  Lon; Oxygen Increase 2550% 
4.8% Wt Lou; Oxygen Increase 400.500% 

Wgt Lou mg/O Atom 0.86 x 10-2 1 
0.9 x 102' 
No Changa 
1 x 10-2' 
1.8 x 1011 
No Change 
No Changr 
1 x 1021 
0.1 x 1021 
2% wt Loss 
68% wt Lorn 
100% wt Loss 

A variety of materials have been flown on the Shuttle and the effect of the 

oxidation/erosion environment on various properties were investigated. The 

observations from the various flight experiments can be summarized as 

follows : 

1.) Materials containing carbon, hydrogen, oxygen and nitrogen have high 

reaction rates which have the range of 2 . 5 ~ 1 0 ' ~ ~  to 3 . 0 ~ 1 0 - * ~  

cm 3 /atom. 

2 . )  

at least a factor of 50. 

3 . )  The reaction rates for filled organic materials are dependent on the 

oxidative stability of the fillers. For example, materials filled with 

metal oxides have lower reaction rates than those filled with carbon. 

Perfluorinated and silicone polymers are more stable than organics by 
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4.) From a macroscopic standpoint, metals, except for osmium and silver 

are stable. Metals such as copper do form oxide layers, but at much lower 

rates. 

The results of the various materials oxidation/erosion experiments 

are extremely important to the compatibility and survivability issues 

associated with the long life of the space station Program. This unique 

long life requirement makes selecting materials and hardware difficult. 

The proper selection of materials will set a precedent for future long life 

space programs. 

2 . 8  PAYLOAD SENSITIVITY TO CONTAMINATION 

Molecular and particulate species can degrade an optical system by 

depositing on optical surfaces or residing in the field-of-view of the 

instrument. Additionally, on orbit contamination in the form of orbital 

debris can degrade thermal control surfaces or create other damage. 

2.8.1 Ccntamhents In the Field-of-View 

The number column density of molecular or particulate species can 

either absorb, scatter or reemit radiation at the sensing wavelength of an 

instrument. 

Figure 2.8.1 shows an estimate of absorption of molecular species 

within an experiment line-of -sight for wavelengths between and 1700k. 

The upper limits on column densities were based on 50A intervals, such that 

a maximum absorption of 0.1% through the species under consideration would 

occur at any 0.OlA wavelength band within each 50A interval. 

This same type of data can be developed for visible and infrared systems. 

500 

Even though the levels shown in Fig. 2.8.1 are stated as 

acceptable for absorption they may not be for scattering or emissions. 
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Scattering for a given species is a function of viewing direction 

and position on orbit. The target brightness will determine how much 

increase in the background is allowable due to scattering. 

The emissions of the gases in a field-of-view depends on the 

species and the excitation cross section for different mechanisms. 

Photons, electrons, collisions and thermal state of the source are types of 

excitation mechanisms. The intensity of the excitation mechanisms will 

vary within an orbit, will change from orbit to orbit and can be influenced 

by spacecraft attitude and contaminant source rate. 

Ionized species will produce different spectra and must be 

determined/calculated based on potential ionization excitation cross 

sections, and photochemistry effects. 

The density of the contaminant gases can influence excited states 

by quenching or charge exchange. 

Overall, emissions of the contaminant gases is the most difficult 

to predict over all wavelengths. Observations on satellites, shuttle and 

ground based measurements of shuttle and satellites shows a far field 

vehicle glow exists in addition to the known observed surface glow on 

shuttle. 

Particulates in the field-of-view can act as hot targets for 

infrared systems. This is true for particles on the order of 5 microns or 

larger. A large number of small particles can interfere over most 

wavelengths. Little data is available as to the degradation levels for 

given particle sizes and concentrations. Mie scattering is the predominant 

mechanism for particulate scattering. 
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2.8.2 Deposited Contaminants 

The effect of deposited contaminants can be changes in 

transmittance, reflectance and solar absorptivity/emissivity. 

The reflectance of W systems has been shown to change as much as 

10% at 1216A for a deposit of only 20 angstroms of outgassed deposits. 

Ultraviolet optics are more sensitive in general to deposits than visible 

or infrared optics. Figure 2.8.2 is a sample of W degradation obtained by 

Dr. R.  Cause, NASA, MSFC. The presence of solar W during deposition has 

also been observed to enhance the onset of deposition, the rate of 

deposition and to change the nature of the deposits. Therefore, sunlit 

surfaces that receive deposition are more susceptible than surfaces not 

exposed. 

2.8.2.1 Transmission and Reflectance 

Some data on transmission and reflectance degradation due to 

contaminant deposition is available from flight samples returned to earth. 

One such set of data was obtained from optics flown on Gemini XII. The 

true source of these deposits is not known. They are one of the few cases 

where detailed measurements were made. Figure 2.8.3 shows a spectral 

attenuation coefficient that was derived from contaminant thicknesses for 

transmission and reflectance. Other limited data on outgassed deposits and 

b ip rope l l an t  engine deposits yielded an extinction coefficient that 

correlated to Fig. 2.8.3 within 30 to 50%. For very critical surfaces 

specific ground testing should be performed for sources that can deposit on 

the critical surfaces. 
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2 . 8 . 2 . 2  Window Transmission Loss 

The transmission attenuation shown in figure 2 . 8 . 3  can be plotted 

Two such examples are for specific wavelengths as a function of thickness. 

shown in Fig. 2 . 8 . 4  at wavelengths of 3000 and 6000 angstroms. 

If the response of a system such as a solar array or the human eye 

is applied to a deposit for a given signal source then a power loss or 

brightness loss can be calculated. Figure 2 . 8 . 5  shows the percent 

brightness loss for a dark adapted human eye. This is important when 

windows or view ports become contaminated over a period of time. 

2 . 8 . 2 . 3  Solar AbsorDtivitv 

Several sets of data on solar absorptivity changes have been 

generated from flight and laboratory testing. 

Figure 2 . 8 . 6  shows the measured change in solar absorptivity for 

two types of white paint. Samples returned from Skylab had mass deposition 

estimates made by near mass monitors and model predictions. The samples 

were exposed to significant levels of solar W and were yellow to tan 

color. 

Figure 2 . 8 . 7  plots changes in solar absorptivity on S13G white 

W was present during and paint obtained from ground engine tests at LeRC. 

after deposition. 
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2.8.3 Orbital Debris 

Orbital debris that is man made is on the increase. These 

particles can cause serious damage to outer surfaces of payloads. A 

summary of the results measured to date can be found in NASA CP 2360. The 

amount of particulate debris will increase with increasing space launch 

activities. 

Dr. Lubert Leger, NASA, JSC has utilized the orbital debris data 

to show that at space station altitudes surfaces experience significant 

impacts. H i s  study showed that 400 impacts per meter squared, per year 

occur on a surface for debris particles in the size range of 0.01 to 0.5 mm 

diameter. 

2.9 SPACE STATION SOURCES 

The sources of contamination for space station are not much 

different than other manned systems such as Skylab and shuttle. 

The external contamination sources will be both particulate and 

molecular and can contribute to both deposition and material within the 

line-of-sight of payload viewing. 

Table 2.9.1 summarizes the sources and indicates whether they are 

continous or intermittent, controllable, or are capable of depositing. 
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3.0 PAYLOAD SURVEY 

In order to assess the impact(s) of the space station induced 

environment on OSSA/IOC payloads, a survey was conducted in an attempt to 

determine what levels of contamination each payload can tolerate and still 

maintain data integrity. 

The following list of payloads plus key contact for each was given 

to SEA by OSSA planners. 

Key Contact Payload Name 

William Robert ASO/SOT Mission 

ASO/SOT Servicing 

ASO/POT Mission 

ASO/POT Servicing 

Cosmic Dust Collection Experiment 

Astrometric Telescope 

Solar-Terrestrial Observatory 

ACRIM 

HRTS 

SUS IM 

S EPAC 

WISP 

TEBPP 

Recoverable PDP (RPDP) 

Solar-Terrestrial Polar Platform 

VCAP 

AEPI 

I so 

WAMI I 

Mission Code 

SAAXOlO 

SAAXOlOA 

SAAXOll 

SAAXOllA 

sAAX112 

5m115 

SAAX207 

SAAX207A 

SM207C 

SAAX207E 

SM207F 

SAAX207G 

SAAX207H 

SAAX207J 

S M 2  2 5 

SAAX225A 

SAAX225B 

SAAX255C 

SAU2 2 5D 
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Thomas Campbell 

Jim Welch 

SAAX225.E MMP/CHEMSAT 

Space-Based Antenna Test Range SAAX5 0 2 

Hubble Space Telescope Servicing SAAXO 1 2  

Arthur Fuchs AXAF Mission 

AXAF Servicing 

Dr. David Gilman Space Station Hitchhiker 1 

Space Station Hitchhiker 2 

Space Station Hitchhiker 3 

Dr. Dixon Butler Mod. Res. Imaging Spectrometer - T 

High Res. Imaging Spectrometer (HIRIS) 

Laser Atmospheric Sounder and Alt. - A 

Synthetic Aperature Radar 

A1 t ime ter 

Scatterometer 

Correlation Radiometer 

Earth Radiation Buget EXP-ERBE 

Magnetosphere Monitors 

Automated Data Collection/LOC Systems 

Earth Observing System (EOS) 

FABPV PERDT Interferometer 

Pressure Modulation Radiometer (PMR) 

Mod. Res. Imaging Spectrometer - N 

38 

SAAX017 

SAAX017A 

SAAX030 

SAAXO 3 1 

SAAXO 3 2 

S A A X ~ O ~  

SAAX2 0 9 

sAAX2 11 

sAEa212 

SAAX213 

SAAx2 14 

SAAX2 15 

SAAX216 

5~21a 

s A A X 2  2 0 

s A A x 2  0 2 

sAAX230 

S A A X 2 3 4  

SAAX2 3 9 



Donald Wrubl ik 

Dr. Robert Schiffer 

William Hibbard 

Eugene Humphrey 

Er. Gerald N o r t h  

Dr. Jonathan Ormes 

Kenneth Rosette 

Joseph Shulman 

Larry Manning 

Dr. Gary Musgrave 

Special Sensor Microwave Imager SAAx240 

LASA-R SAAX241 

Advanced Microwave Sounding Unit SAAX244 

Microgravity and Materials Processing SAAX401 

Facility (MMPF) 

Hitchhiker 4 - Earth Radiation 

Explorer 2 Servicing 

Explorer 3 Servicing 

SAAX250 

SAAX028 

SAAXO 2 9 

Gamma Ray Observatory Servicing SAAX013 

Tropical Rainfall Mapping Mission sAAx251 

Cosmic Ray Nuclei Experiment 

Explorer 1 (SMM) Servicing 

Space Station Spartan Mission 

Space Station Spartan Servicing 

SIRTF Mission 

SIRTF Servicing 

Life Sciences Lab 

SAAXOOl 

SAAXO 2 7 

SAAXO 2 2 

SAAX022A 

SAAX004 

SAAXOO4A 

SAAX307 
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On 20 June 1986, a request-for-information (RFI) form (Fig. 3.1) 

Of the sixteen original was sent to each of the key contacts listed above. 

contacts, five gave names for further contact. These were: 

1.) Dixon Butler - John Gille (Upper Atmosphere Cryogenic Limb 
Device) 

- Greg Vane (HIRIS) 

2. )  William Roberts - Art Walker (ASO) 

- Jack Kropp (STO) 
3 . )  David Gilman - Dan Spicer (SOT) 

- Fred Wittteborn (SIRTF) 
4.) Kenneth Rosette - James Moore (Space Telescope) 

- John Mather (COBE) 
- Donald Kniffen (GRO) 
- Stewart Jordan (SOT) 
- Carl Reber (UARS) 

5 . )  Gary Musgrave - Roger Arno (Life Sciences Lab) 

- Roger Michaud (Life Sciences Lab) 
Each of the additional contacts was sent a RFI form for their respective 

payload. On 9 September 

1986, telephone calls were made to those who: 1.) had not responded in any 

way to the RFI form and 2. )  to those who had only responded in part to the 

total number of payloads they were designated as being the primary contact. 

Table 3.1 provides a summary of which payloads contacts responded to the 

RFI form. 

All RFI forms were sent on or before 1 July 1986. 
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KkWUtS I' FOR INFORMATION 

~~ 

2 . 0  1,ocatioii on Space S t a t l o n  (coordinates  + verbal d e s c r i p t l o n ) :  - 

4 . 0  Payload Welglit: - 

7 . 0  F i e l d  of View of C r l t l c a l  Surfaces: __ ------- 

FIGURE 3.1. REQUEST FOR INFORMATION FORM 
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g . 1  Actlve or passlve veat locations: 

9.2 Actlve or passive vent flow rates/specles (eflluent types)/ 
temperatures : 

----- -- 
----------- - 

10.0 Externally exposed critlcal surf'ace identification and operating 
temperature : 

--- 
11 . O  Surfaces exposed durlng EVA: 

----- 

12.0 Operating temperature of thermal control surfaces or baffles: 
----- 

- -- 
13.0 Nearest ne ighbor payloads : 

14.0 Surfaces exposed to UV: 

15.0 Surfaces In Fleld of View of critical surfaces: 

16.0 Surface platerla1 In FOV of crltical surfaces: 

17.0 Therrnal/vaciliim condftlonlng/handllng prlor to installatlon 
(tempcrature, time, instriimentatlon, etc.): 

18.0 External materials type: 

19.0 External surface temperatures: 
- 

20.0 Final cleaning procedures and time prior to installation: 

FIGURE 3 . 1 .  REQUEST FOR INFORMATION (CONTINUED) 



-__ 

24.0 Sensitivity of surfaces to atomic oxygen: 

_~~ ~ 

25.0 Sensitivity of critical surfaces to molecular deposition: - 

26.0 Sensitivity of critical surfaces to deposited particles: - 
___----I----------------------- -- 
27.0 Sensitivity to particles i n  FOV - size, number, frequeiicy: 

FIGCTRE 3.1. REQUEST FOR INFORMATION (CONTINUED) 
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Table 3.1 RFI Response Summary 

PAYLOAD CONTACT PAYLOAD NAME RESPONSE TO RFI 

William Hibbard 

Eugene Humphrey 

Dr. Gerald North 

Dr . Jonathan Ormes 

Kenneth Rosette 

Joseph Shulman 

Larry Manning 

Roger Arno 

Roger Michaund 

Jim Welch 

Arthur Fuchs 

Dr. David Gilman 

Dr. Dixon Butler 

Explorer 2 Servicing 

Explorer 3 Servicing 

Gamma Ray Observatory 

Tropical Rainfall Mapping 

Cosmic Ray Nuclei Experiment 

Superconducting Magnet Facility 

Explorer 1 Servicing 

Space Station Spartan Mission 

Space Station Spartan Servicing 

SIRTF Mission 

SIRTF Servicing 

Life Sciences Lab 

Life Sciences Lab 

Hubble Space Telescope Servicing 

AXAF Mission 

AXAF Servicing 

Space Station Hitchhiker 1 

2 

3 

Mod. Res. Imaging Spectrometer-T 

High Res. Imaging Spectrometer 

Laser Atmospheric Sounder and Alt 

Synthetic Aperature Radar 

A1 t ime ter 
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- A  

NO 

NO 

YES 

YES 

NO 

YES 

NO 

NO 

NO 

YES 

YES 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

No 

YES 

NO 

NO 

NO 



Scatterometer 

Correlation Radiometer 

Earth Radiation Buget EXP-ERBE 

Magnetosphere Monitors 

Automated Data Collection/LOC 

Earth Observing System 

FABRV PERDT Interferometer 

Pressure Modulation Radiometer 

Mod. Res. Imaging Spectrometer - N 

Special Sensor Microwave Imager 

USA - R 
Advanced Microwave Sounding Unit 

Microgravity & Materials Processing Donald Wrublik 

Facility 

Dr. Robert Schiffer Hitchhiker 4 - Earth Radiation 
William Roberts ASO/SOT Mission 

ASO/SOT Servicing 

ASO/POF Mission 

ASO/POF Servicing 

Cosmic Dust Collection 

Astrometric Telescope 

Solar-Terrestrial Observatory 

Solar-Terrestrial Polar Platform 

Upper Atmosphere Cryogenic Limb Device John Gille 

Greg Vane HIRI S 

Art Walker AS0 

Jack Kropp Solar-Terrestrial Observacory 
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~ 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

YES 

NO 

NO 

NO 

NO 

NO 

NO 

YES 

YES 

NO 

NO 

YES 

NO 

YES 



Dan Spicer AS0 NO 

Fred Witteborn SIRTF YES 

James Moore Space Telescope NO 

John Mather COBE NO 

Donald Kniffen GRO NO 

S t e w a r t  Jordan SOT NO 

Carl Reber UARS NO 

Table 3.2 summarizes those RFI forms which were returned t o  SEA completed. , 

i 
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3.1 SUMMARY/CONCLUSIONS 

OSSA provided SEA with a list of approximately 40 payloads for 

which they felt it was necessary to evaluate during this study. RFI forms 

were sent to each payload contact with a letter explaining why we were 

requesting the information. Of those RFI forms that were sent, only 5 

forms were returned to SEA with the questions answered. 

Based on the data shown in Table 3.2 one can readily see how 

little contamination is understood by most payload specialists. For 

example, question 19 of the RFI form asks about the types of materials that 

will be used on external surfaces. The response given for the 

Superconducting Magnet Facility was, "conventional thermal control 

materials." Conventional thermal control materials consist of kapton 

blankets and white paints. Both of these materials are susceptible to 

atomic oxygen and molecular deposition. However, the response to the 

questions which specifically address the areas of atomic oxygen and 

molecular deposition susceptibility was "none." These types of responses, 

together with the fact that less than 1% of all the RFI forms sent were 

returned with data make it difficult to assess the impacts of the total 

interaction of space station and STS with OSSA payloads. 

We knew from the outset of this study that many of the questions 

contained in the RFI form may not have answers at this stage in the Space 

Station program. However, it was our intent to create an awareness within 

the OSSA payload community of contamination issues and their potential 

impacts on each payload. 
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4.0 CONTAMINATION REQUIREMENTS - JSC 30426 
The space station external contamination control requirements that 

were modified as a result of an Aug. 13-14, 1986 Contamination Control 

Working Group meeting are presented here for reference. These will 

essentially be part of space station requirements for Phase C/D studies. 

The input to this working group during this study are discussed in detail 

in section 5.1.3. 

51 



JSC 30426 

CONTAMINATION REQUIREMENTS 

52 



ASTM 

cm 

g 

IR 

JSC 

MCD 

MIL 
PMP 

SSCBD 

STD 

STS 

TBD 

uv 
VCM 

ABBREVIATIONS AND ACROdYMS 

American Society for Testing and Materials 

Centimeter 

Gram 

Infrared 

Johnson Space Center 

Mol ecul ar Col umn Density 

Mi 1 i tary 

Prime Measurement Point 

Space Station Control Board Directive 

Standard 

Space Jransportation System 

To Be Determined 

U1 traviol et 

Vol at i 1 e Condensable Material 

JSC 3 0 4 2 5  
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GLOSSARY JSC 3 0 4 2 5  

CONTAMINATION. Any effect arising from the induced environment gaseous, 
particulate, or light background that interferes with or degrades the results 
of the intended measurement or that degrades S ace Station component and 

ued use. 
pay1 oad experiment hardware such that refurbi s E ment i s requi red before cont i n - 

DEPOSITION--MASS. The mass of contaminant collected by a unit area of a 
surface. 
contaminant, the surface temperature, solar exposure, and the prfperties o f  
the surface and the contaminant. 

DEPOSITION--THICKNESS. The thickness of contaminant collected on a surface. 
Since the deposition is not typically uniform, this quantity i s  usually an 
average. 
nant. Deposition thickness units are cm or Angstrom (1A-10- cm). 

INDUCED ENVIRONMENT. The molecular, particulate, and photon environment in 
the vicinity o f  and created by the presence o f  the Space Station. Ambient 
atmospheric perturbations which are caused by spacecraft flight and create 
wake/ram effect are covered in this definition. 

MAIN CLUSTER SPACE STATION. That part of the Space Station which contains 

! ower booms dedicated to astronomical and Earth viewing. 
MOLECULAR COLUMN DENSITY (MCD). The integral of the number density (number of 
molecules of a particular species per unit volume) along a specified line o f  
sight origintting from one o f  the Prime Measurement Points (PMP)'s. MCD unit 
is number/cm . 

The deposition process depends on the incident mass flux of the 

Mass deposition units are g/cm . 

It is then related to mass deposition by the densit4 of the contami- 
1 

ressurited modules, servicing facilities, and regions on the the upper and 

NONQUIESCENT TIME INTERVALS. Periods when some o f  the requirements specified 
herein do not have to be met and measurements may be perturbed by the induced 
environment to the extent described in this document. 

PAYLOAD. 

PRIME MEASUREMENT POINT (PMP). 
observing regions of the Station cluster representative of the location o f  
entrance apertures of instruments for use in modeling the induced environment. 

QUIESCENT TIME INTERVALS. 
ment occur; generally, this includes all times except such activities as Space 
Transportation System (STS) docking and undocking, and periodic reboost. 

SPACE STATION PLATFORMS. 

SPACE TRANSPORTATION SYSTEM (STS). 
ments and payloads. 

SPECTRAL IRRADIANCE. The radiant energy incident on a unit area per unit time 
from a unit solid angle within unit spectral interval. 

Space Station user specific hardware. 

Locations on both the Earth and astronomical 

Periods when minimum perturbations to the envi ron- 

Independent, free flier portion o f  Space Station. 

Delivery vehicle for Space Station ele- 
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1.0. SCOPE 

This document contains the requirements for the induced, external, gaseous, 
light, and particulate environment of the Space Station and its elements that 
are necessary to ensure maximum utilization of Station capabilities. 
requirements are derived from previous experience bases and should therefore 
be achievable at minimum program costs if they are considered early in design. 
These requirements reflect the maximum levels of induced environment that can 
be tolerated in order to make measurements without induced atmospheric per- 
turbations for a1 1 presently known attached users except some atmospheric 
composition studies. Requirements as stated are applicable for Station 
elements including payloads. 
marily driven by user needs, Space Station component requirements have been 
considered and are included when these components are the most sensitive. 
Requirements applicable to Shuttle delivery to space and return are also 
i ncl uded. 

The 

A1 though the requirements as stated are pri- 
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JSC 30426 

2.0. DOCUMENTS 

2.1. APPLICABLE DOCUMENTS 

2.1.1. 
Contaminat ion C o n t r o l  Program 

2.1.2. Johnson Space Center  (JSC) SN-C-O005B, S p e c i f i c a t i o n ,  Contaminat ion  
C o n t r o l  Requirements f o r  t h e  Space S h u t t l e  Program 

2.1.3. ASTM E595, Standard T e s t  Method f o r  T o t a l  Mass Loss and C o l l e c t e d  
V o l a t i l e  Condensable M a t e r i a l s  from Outgass ing i n  a Vacuum Environment 

2.2. REFERENCE 

JSC 30233, Space S t a t i o n  Requirements f o r  M a t e r i a l s  and Processes 

MIL-STD-l246A, M i l i t a r y  Standard Produc t  C l e a n l i n e s s  L e v e l s  and 



JSC 30425 

3 . O .  REQUIREMENT APPLICABILITY 

3.1. MAIN CLUSTER SPACE STATION 

3.1.1. TEMPORAL 

The induced environment associated with the core Station will be strongly 
influenced by activities associated with its operation. For example, the 
induced environment will be increased during Shuttle docking and periodic 
Space Station reboost. It is prudent, therefore, for specification of the 
induced environment contamination requirements to define two conditions of the 
induced environment, quiescent periods, and disturbed or nonquiescent periods. 
Quiescent periods provide minimum induced environment and maximum measurement 
capability, and all the requirements of this document are applicable. For 
nonquiescent periods, it is assumed that the disturbed environment will 
generally be unacceptable for some measurements; however, the environment must 
not produce conditions that preclude returning to operational measurements as 
soon as the disturbing activity is terminated. Requirements stated in 
paragraph 4.5.1 are not applicable during nonquiescent periods. Disturbing 
activities leading to nonquiescent periods should be of short duration 
resulting in most of Space Station time being quiescent. 
mental conditions as stated in paragraph 4.5.1 shall be maintained for up to 
14 days during required viewing periods. Nonquiescent periods shall not 
exceed TBD percent of Station time. 

Generally, environ- 

3.1.2. GEOMETRIC CONSIDERATIONS 

Requirements as outlined in section 4.0 are applicable to all regions around 
the main Space Station cluster. 

3.2. PLATFORMS 

3.2.1. TEMPORAL 

Platforms require servicing periodically, and it is reasonable to assume that 
not all measurements will be possible during associated operations. It is 
convenient to also separate platform requirements into quiescent and 
nonquiescent categories. 
the main cluster considerations apply. 

3.2.2. GEOMETRICAL 

TBD--Dependent on each platform requirements 

The same connotatioR and applicability as used for 
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4.0. REQUIREMENTS 

4.1. CONTAMINATION CONTROL PLAN 

A Space Station Contamination Control Plan defining the implementation meth- 
ods, controls, and responsibilities which are necessary to ensure the require- 
ments are met shall be generated. 

4.2. MANUFACTURING AND MATERIALS 

Two requirements apply to the manufacturing phase of both the Space Station 
components and user equipment. First, all hardware external surfaces shall be 
cleaned as a minimum to level 750 as defined in MIL-STD 1246A prior to final 
assembly for delivery to space. Second, all materials used on hardware o f  a n y  
type including platforms, which will he exposed to space vacuum during the 
operational phase, must have low outgassing characteristics as defined by a 
total mass loss of 5 1.0 percent and a Volatile Condensable Material ( V C M )  Gf 
< 0.1 percent, when tested per ASTM-E595. 
Requirements for Materials and Processes, JSC 30233, paragraph 3.2.7.) Since 
airlocks are periodically depressurized, all materials used in the airlocks 
also must be selected for low outgassing. 

Materials used in critical areas such as window compartments, solar dynamic 
collectors, or large surface areas such as servicing facilities must have 
outgassing characteristics compatible with deposition requirements and may 
have to be selected to more severe outgassing requirements than stated above. 
Off-the-shelf hardware will be screened for outgassing characteristics using 
TBD eval uati on procedures. 
4.3. SHUTTLE DELIVERY OF STATION COMPONENTS AND USER HARDWARE 

For the purpose of Shuttle integration and space delivery, Station hardware 
will be cleaned to the standard level as defined in JSC-SN-C-0005 as a mini- 
mum. (Requirements of paragraph 4.2 will be adequate to satisfy this require- 
ment.) Generally, the same requirements will be applicable for user hardware: 
however, more stringent requirements as defined in JSC-SN-C-0005 or MIL-STD 
1246A (as referred to in paragraph 4.2) can be selected on an individual 
mi ssion basis. 

(See also Space Station 

4.4. AMBIENT ATMOSPHERE/SURFACE INTERACTIONS 

As Space Station flies through the Earth’s rarefied environment, a ram-wake 
effect i s  created, i.e., pressure build-up occurs on forward facing surfaces 
and a pressure decrease occurs on aft facing surfaces. Pressure b u i l d - u p  on 
surfaces which have some exposure to ram can be as large as one to two orders 
of magnitude higher than the ambient pressure. Instruments which are sensi- 
tive to such pressure effects should be carefully located relative to l a r  e 
surfaces to preclude interference. Change in composition of the surface ?oca1 
environment can be expected due to either reaction with the surface or recom- 
bination occurring on or near the surface. 

4 . 5 .  MAIN CLUSTER SPACE STATION AND PAYLOADS 
4.5.1. QUIESCENT PERIODS 

4.5.1.1. BACKGROUND SPECTRAL IRRADIANCE 

The total Ultraviolet (UV) and visible radiation background from 
spacecraft-induced particulate and molecular scattering and emission must be 
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l e s s  than the envelope defined by the  spectral  i r radiances i n  t ab le  4 - 1 .  
For the Infrared ( I R ) ,  the background in tens i ty  must be s p a t i a l l y  and tem- 
porally uniform with a maximum variation of 1.1 X 
per degree and 5.5 X ~0.~' watt 9 r - l  per second from 5 micrometers 
to  30 micrometers and 1.1 X w a t t  a - z  rr - l  m.l per degree and  5.5 X 

watts ,r-l per second above 30 micrometers. To achieve t h i s ,  
the  background spectral  i r radiance must be held below the envelope shown i n  
t ab l e  4 - 2 .  T k e  maximum allowed value applies only i f  the background i s  
temporally and s p a t i a l l y  uniform enough t o  meet the s t a t ed  requirements. The 
recommended values a re  based on a best estimate of the ant ic ipated spa t ia l  
var ia t ions .  

4.5.1.2. MOLECULAR COLUMN DENSITY (MCO) 

The induced MCD along any payload l i n e  of s i g h t  sha l l  n o t  exceed the f o l -  
lowing: 

4.5.1.2.1. 1 X l o L L  molecules/ cm2 each f o r  H20, fo r  C02 and f o r  a l l  other :R 
emit t ing molecules ( t o t a l  n o t  t o  exceed 3 X 

4.5.1.2.2. 1 X l o L 3  molecules/ cm2 each f o r  02 f o r  N2, f o r  H2,  fo r  noble gases 
and f o r  a l l  o ther  UV and non-IR act ive molecules combined ( t o t a l  not t o  exceed 
5 X 10L3 molecules/cn* ) 

4.5.1.3. PARTICU-LATE BACKGROUND A N D  DEPOSITION 

4.5.1.3.1. PARTICULATE BACKGROUND 

Release o f  p a r t i c l e s  from main c lus t e r  Space Stat ion sha l l  be l imited t o  one 
p a r t i c l e  5 microns o r  l a rge r  per o rb i t  per 1 X l ~ - j  s te rad ian  f i e l d  of view 
as seen by a i meter diameter aperture te lescope.  

Control of p a r t i c l e s  l e s s  than 5 microns i n  s i ze  sha l l  meet TED requirements. 

4.5.1.3.2. PARTICULATE DEPOSITION 

TBD 

wattsm-' ,r-L 

molecules/,,z) 

4.5.1.4. MOLECULAR DEPOSITION 

The f lux  o f  molecules emanating from the core Space S ta t ion  must be l imited 
such t h a t :  

4.5.1.4.A. The mass deposit ion r a t e  on two 300' K surfaces  both located a t  
the PMP with one perpendicular t o  t h e  CZ axis  and the other  whose surface 
normal l i e s  in the horizontal  plane and a t  c r i t i c a l  power locat ions,with an  
acceptance angle o f  2 * steradian shall be no more than i .y LO-'(' g/cn- sac 
( d a i l y  average). 

4.5.1.4.8.  The mass deposit ion r a t e  on a 300' K surface located a t  the PMP 
and perpendicular t o  the Z axis  w i t h  a n  acceptance angle of 0 . 1  s teradian 
sha l l  be no more than 10-L6 g,cIp2 sac (da i ly  average).  

4.5.1.4.C. 
perpendicular t o  the Z ax is  w i t h  a n  acceptance angle of 0.1 s te rad ian  s h a l l  be 
no more than (dai ly  average) excluding condensation o f  
atmospheric cons t i tuents .  

4.5.2.  NONQUIESCENT PERIODS 

The mass deposit ion r a t e  on a 5' K surface located a t  the  PMP and  

2 x 1 0 - 1 ~  g,cnz 
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4 . 5 . 2 . 1 .  MOLECULAR 0EPOSIT.ION 

Total deposition on sensitive surfaces such as solar arrays or either the 
astsonomy or Earth resources observation regions shall not exceed G x 10.’ 
a/- yr. 

4.5.2.2. PARTICULATE DEPOSITION 

TBD 
4.6. PLATFORMS 

This section will be completed when primary measurement requirements are 
derived. For preliminary design purposes, the platform contamination environ- 
ment shall meet the requirements stated in paragraphs 1.0 through 5.0 herein 
as a minimum. Each platform mission shall define specific requirements i n  a 
P1 atform Contamination Control P1 an. 

4.7. EXTERNAL SERVICING 

Spacecraft and instrumentation will be serviced external to the Station’s 
pressurized environments in a partially enclosed but unpressurited area. 
Requirements associated with this servicing area include particulate deoosi- 
tion rates o f  TBD g/cm2 sOC and mglecular deposition rates of L x g/cm2 scc 
(daily average) a’s measured on a 300 K surface with an acceptance angle of 2 .  
steradian. During transfer of payload components from external to internal 
areas, component cleanliness levels shall be maintained. 

60 



J S C  30426 

T A B L E  4-1. U L T R A V I O L E T  ( U V )  AND V I S I B L E  SPECTRAL I R R A D I A N C E S  

WAVELENGTH BACKGROUND SPECTRAL I R R A D I A N C E  AT 90' SUN ANGLE 

(nm) 
121.6 
155 
191 
246 
298 
332 
425 
550 
1000 

(watts m-2 

3.5 
1.9 
1.3 
5.9 
1 .o 
2.5 
2.0 
1 .o 

TABLE 4-2. INFRARED BACKGROUND SPECTRAL I R R A D I A N C E  

WAVELENGTH 

(Micrometers) 

1 
5 
10 

(30 
530 
300 

MAX I MUM 

JUNIFORM BACKGROUND) 

(watt m-' sr-I nm-') 

RECOMMENDED SPECTRAL I R R A D I A N C E  
SPEC I AL I RRAD I ANC E 

(watts me2 5r- l  nm-l) 
-10 

5.0 x 10111 
4.0 x 10 11 

6.0 x 
3.0 x 10 

1.0 x 10 11  

1.0 x 10:1* 

-10 1.0 x 
1.0 x 

4.0 x 10111 
3.0 x 10-11 
1.0 x 10 

2.0 x 10 1 1  

6 1  
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5.0. VERIFICATION AND MONITORING OF THE ENVIRONMENT 

I n  a d d i t i o n  t o  measurements r e l a t e d  t o  v e r i f i c a t i o n  o f  Space S t a t i o n  p e r f o r -  
mance t o  t h e  requi rements conta ined i n  t h i s  document, m o n i t o r i n g  o f  t h e  e n v i -  
ronment t o  a l i m i t e d  e x t e n t  w i l l  be requ i red .  
measurement requi rements s h a l l  cons ider  background s p e c t r a l  i r r a d i a n c e s ,  
mo lecu la r  and p a r t i c u l a t e  depos i t i on ,  re leased p a r t i c u l a t e ,  gas d e n s i t y  and 
composi t ion,  l o c a l  and d i r e c t i o n a l  pressure,  gas column dens i t y ,  and re tu rned  
gas f l u x .  

V e r i f i c a t i o n  and mon i to r i ng  
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End of Contaminat ion 

Con t ro l  Document JSC 30426 
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5.0 ACTION ITEM/TRADE SUMMARY 

Throughout the study major issues surfaced in the NASA community. 

Several of these had contamination impacts and SEA was asked to support 

them. These are summarized here along with the end results of each task. 

5.1 CONTAMINATION CHANGE REQUEST SUPPORT FOR DUAL KEEL 

This task originated in late July when it was determined that an 

updated contamination requirements set, in JSC 30000, was required for 

presentation to the appropriate level B review boards. SEA reviewed the 

existing contamination requirements and updated wherever possible. 

Contacts were made with payload at NASA centers. 

Literature reviews were also performed to find any updated analysis that 

was applicable. 

personnel and scientists 

The issue of venting was also assessed by SEA. The results of the 

venting study is presented in the following sections. 

Section 5.1.4 summarizes the presentations made for the 

contamination Requirements Change Request. 

5.1.1 Ventinq 

With the exception of engine firings, probably no contamination 

source needs to be more carefully analyzed than waste venting. Venting has 

the potential to produce very high concentrations of optically and 

chemically active contaminants over large volumetric regions. 

Consequently, it is extremely important to correctly model venting so that 

contaminated regions can be identified, evaluated, and if necessary 

avoided. 

I , 

In an effort to maintain control both spatially and time wise over 

the venting of wastes on the dual keel configuration of space station, a 

single common vent was proposed by JSC. The common vent was placed at the 
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wake end of the habitation modules (see Figure 5.1.1). In order to 

evaluate the contamination effects produced by a common vent, JSC modeled 

the vent as shown In Figure 5.1.2. Based on their vent model, J S C  

determined volumetric regions where contaminant levels were acceptable or 

unacceptable. Volumes with acceptable number column densities were 

designated Region 1 volumes. Volumes with unacceptably high number column 

densities were designated Region 2 volumes. 

Unfortunately, the JSC vent modeling was overly simplistic and 

based on several erroneous initial assumptions. The JSC modeling effort 

assumed a free molecular flow within the nozzle, which lead them also to 

assume that the vent plume would retain the shape of the nozzle 

indefinitely. Based on these assumptions, JSC ignored the possibility of 

backflow (molecules which are scattered by the nozzle walls and each other 

out of the trajectory confines defined by the nozzle walls). 

In order to more correctly evaluate the contamination effects of 

the common vent concept, backflow must be considered. Figure 5.1.3 shows 

three different nozzle configurations which were analyzed and tested by 

AEDC. As shown in the test matrix, the nozzles were tested at several 

different stagnation pressures and temperatures. The constant flow angles 

and constant number density lines are shown for nozzle b. 

From this figure it is clear that the backflow from such a nozzle is quite 

significant. Analysis of the AEDC data allowed scaling of the AEDC results 

to the JSC nozzle configuration. The mass flux rates along two lines of 

sight from the payload locations were calculated. The two lines of sight 

are depicted in Figure 5.1.1 as dashed lines. The calculated mass flux 

rates for the two lines of sight are shown in Figure 5.1.5. 

in Figure 5.1.4 
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As a result of our analysis of the JSC vent concept, the following 

conclusions were drawn. 

1.) The JSC vent would produce significant backflow at the payload 

locations. 

2 . )  Free molecular flow does not exist for duct pressures between 76 torr 

and 7.6 torr and flow rates between .01 gm/sec and 1 gm/sec (JSC proposed 

range). 

3 . )  AEDC-TR-85-26 nozzles with throat to exit ratios between 16 and 400,  

and pressures between 10.8 torr and 188 torr, show significant backflow. 

4 . )  Scaling to the JSC nozzle produces fluxes at payload positions on the 

order of 2 ~ 1 0 ” ~  to 2 ~ 1 0 ” ~  gm/cm 2 /sec for flows of 0.1 to 1 gm/sec. 

5.1.2 Ram Pressure (Dual Keel Confieurationl 

The dual keel configuration of Space Station places the instrument 

payloads a considerable distance from the solar panels. Due to the 

distance separating the instrument payloads from the solar panels, along 

with the orientation of the space station relative to Ram, it is considered 

unlikely that the Ram pressure buildup in front of the solar panels will 

cause any direct contamination problems for the payloads. However, there 

is a concern that the density buildup in front of the solar panels might 

cause sufficiently high number column densities along lines of sight near 

the panels to create viewing degradation in these regions. 

To obtain representative number column densities for lines of 

sight passing near the solar panels, a 26 by 10 meter rectangle was modeled 

in a perpendicular orientation relative to Ram. Figures 5.1.6 and 5.1.7 

show the isodensity profiles obtained for the solar panel when 

perpendicular to Ram, with Ram at a density of 5x10’ molecules/cm . 

Lines of sight originating at the corner of the upper truss, and passing 

3 
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through the enhanced density region above the panel were determined. These 

lines of sight are depicted in Figure The molecular number density 

was integrated along each line of sight to obtain the molecular number 

column density. The number column densities calculated are listed in 

Figure 5.1.9 

5.1.8 

Any structure with large surfaces has the potential to create 

contamination problems due to Ram pressure buildup. Structural portions of 

one payload may cause viewing restrictions for another payload due to high 

number column densities along lines of sight passing through the region 

near the structure. An example for the dual keel configuration would be 

the antenna for experiment TDMX 2153 number column 

densities for some lines of sight .from other experiment locations on the 

payload truss. Figure 5.1.10 shows two lines of sight and their 

corresponding number column densities. 

which could cause high 
.I 

Although a surface oriented normal to the Ram will produce the 

maximum density buildup, surfaces oriented parallel to the Ram will also 

cause a density buildup. The density buildup for a parallel surface is due 

to the thermal component of the ambient which causes a small portion of the 

ambient molecules to impact the parallel surface and be accommodated and 

reemitted. A "snowball" effect is started because the reemitted molecules 

collide with other ambient molecules causing even more surface impacts. 

The result is a Ram density buildup especially towards the back of the 

parallel surface. Figure 5.1.11 shows the isodensity profile for a 26 by 

10 meter rectangle oriented parallel to the Ram flow. 
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5.1.3 Contamination Control Working GrOUD InDuts and Surmort 

This section presents the recommended additions and changes to the 

contamination control requirements that became part of the CCWG meeting. 

The SEA inputs were presented to OSSA CODE E and contamination personnel at 

Goddard. They were incorporated into a joint CODE E/GSFC position. Not 

all of these recommended changes were incorporated in the final change 

request. See Section 4 for the latest requirements as of the date of this 

report. 

5.1.3.1 Molecular DeDOSitiOnS 

Stated in JSC CR 

The Flux of molecules emanating from the core Space Station must 

be limited such that: The mass deposition rate of a 300 K surface located 

both at the PMP and perpendicular to the Z-axis and for solar power 

system critical surface with an acceptance angle of 2 steradians shall be 

no more than 1.0 x PO -l4gm/cm sec. 2 

The mass deposition rate on a 300°K surface located at the PMP and 

perpendicular to the Z-axis with an acceptance angle of 0.1 steradian shall 

be no more than 1.0 x 10-16gm/cm sec. 2 

The mass deposition rate on a 5°K surface located at the PMP and 

perpendicular to the Z-axis with an acceptance angle of 0.1 steradian shall 

13 2 be no more than 2.0 x 10 gm/cm sec excluding condensation of 

atmospheric constituents. 

Recommended Additions 

t 

I 

1 

Deposition levels on U.V. optics shall not exceed 20 A (related to 
l a 10% reflectivity change for lyman - alpha, 1216A). 
1 
I 

I 
I 
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1 

5 

10 

<3 0 

>3 0 

300 

5.1.3.2 Molecular Column Densities 

Stated in JSC CR 

lo1’ molecules/cm2 for each of H20, C02 and all other IR 

emitting species. 

molecules/cm2 for each of 02, N2, H2 and noble gasses 

or non IR emitters. 

Recommended Chanees 

10” molecules/cm2 for each of H;3, C02, and 10” molecules 

for all other IR emitting species combined. 

1013 molecules/cm2 for each of 02, N2, H2, and for 

noble gases or non IR emitting species. 

5.1.3.3 IR Background Briehtness 

Stated in JSC CR 

Wavelength (u) Recommended Spectral Maximum Spectral Irradiance 

(watt m-2 sr-1rn-1) (uniform background) 

(watt m-1 sr-1rn-1) 

1.0 x 10-10 1.0 x 10-10 

7.0 x 7.0 x 

1.0 x 10-11 

1.0 x 10-10 

1.4 x lo-’’ 
4.2  x lo-’’ 

1.0 x 10-10 4.2 10-9 

1.0 x 10-10 4.2 x 
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Recommended Change 

Wavelength (p) Recommended Spectral 
(watt m- 2sr-1rn-1 

1 1.0 x 10-10 

10 4.0 x 10-11 

<3 0 1.0 x 10-11 

5 5.0 x lo-'' 

- 
>30 6.0 x 

300 3 .0  x 

Maximum Spectral Irradiance 

(uniform background) 

(watt rn - 2s r -'run- 1 ) 

1.0 x 10-10 

1.0 x 10-10 

2 . 0  x 10-10 

4 . 0  x lo-'' 
3 . 0  x lo-'' 
1.0 x 10-11 

5 . 1 . 3 . 4  Particulate Backeround and DeDosition 

Stated in JSC CR 

Release of particles from core Space Station shall be limited to one 

particle 5 microns or larger per orbit per lx steradian field of 

view as seen by a 1 meter diameter aperature telescope. Requirement is 

applicable to all regions. 

Recommended Additions 

Particulates in the field-or-view of U.V. payloads shall be less 

than or equivalent to a class 10,000 clean room over a distance of 100 

meters. 

Particulate deposition on external payload optics shall not exceed 

a surface area obscuration of more than 3 % ,  evaluated at 6400A. 

Particulate deposition on sun shades shall not change (degrade) the  

BDRF of that surface more than 1 percent at 6400A. 
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5.1.3.5 Sewicing 

Stated in JSC CR 

2 Particulate deposition rates of TBD gm/cm sec and molecular 

2 deposition rates of 1 x gm/cm sec as measured on a 300" K 

surface with an acceptance angle of 2 

are referred to in paragraph 2.1.2.4.3.2. of JSC 30000. 

steradian. These requirements also 

Recommended 

The service bay shall be capable of maintaining a surface during 

its exposure period in the service bay to a class 400 surface as defined by 

Mil. Std. 1246A. Molecular deposition rates of 1 x gm/cm sec as 

measured on a 300°K surface with an acceptance angle of 2 7  steradian. 

5.1.3.6 Ventinp, 

2 

The venting issue was previously discussed in section 5.1.1 of 

this report. 

Essentially, the JSC position was to define a region 2 that 

violated the column density requirement. 

SEA proposed no such definition since it was configuration 

dependent and the vent nozzle flowfield was not accurately defined. The 

SEA position was that venting should be allowed if it meets the column 

density requirements. If not, a waiver should be required or no venting 

allowed. 

5.1.4 Presentations /Meetings 

Several meetings were held on venting issues with NASA, OSSA, Dr. 

Lubert Leger, NASA, JSC, Dr. Ray Cause NASA, MSFC and telecons with A1 

Bailey, AEDC. The meetings of importance were: 

o NASA Headquarters, 11 August 1986, on requirements and venting 

issues in review and preperation for the contamination Control 
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Working Group Meeting at JSC. 

o CCWG, JSC, 13-14 August 8 6 .  This working meeting updated the 

requirements in JSC 30000 f o r  contamination control. At this 

meeting an agreed upon revised set of requirements was arrived at 

by all attendees. This included personnel from GSFC, MSFC, JSC, 

LeRC, OSSA CODE E, JPL, NRC CANADA, NASDA JAPAN, ESA, Science and 

Engineering Associates, Martin Marietta and McDonnell Douglass 

Major improvements in the requirements were achieved at this 

meeting. 

5 . 2  CONSTANT ALTITUDE VERSUS CONSTANT DENSITY 

During the course of the study SEA was asked to see what 

contamination issues existed, if any, if the Space Station were to fly at a 

constant ambient atmosphere density instead of a constant altitude. The 

constant density corresponds to solar max at 250 NM. Instead of having 

periods of less ambient density the Space Station would change altitude to 

keep it constant. 

The following is a summary of the constant density impact. 

In general the relative changes compared to constant altitude were 

not severe. 

o Ram pressure buildup on windward facing surfaces would be higher 

than the average at constant altitude. 

Atomic oxygen erosion rate will increase 

Return flux of contaminants could increase slightly 

Glow phenomena would be slightly higher in intensity 

RCS engine useage may be different 

o 

o 

o 

o 
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5.3 ALTERNATE REPHASED SPACE STATION INCREMENT 2 (TRANSVERSE BOOM) 

On September 8, 1986 SEA was requested to quickly assess the impact of the 

transverse boom configuration on contamination as compared to dual keel. 

On 12 September 1986 the quick look analysis was zap mailed to OSSA 

headquarters. Several presentations resulted after this initial mailing. 

5.3.1 General Assessment 

Generally the transverse boom is worse than the dual keel from a 

contamination point-of-view. Table 5.3.1 shows the comparison. It should 

not be construed the problems are greater in a 

relative sense. 

insurmountable rather just 

The preliminary results of this quick look study is shown in Table 

5.3.2. 

Table 5.3.1-Contamination Differences Between Dual Keel and 

Transverse Boom. 

0 DUAL KEEL 

- Generally acceptable for most payloads 

- Small portions of viewing directions may be unacceptable 
- Uncontrollable sources (leakage, vents,ram pressure) are at long 
distance from payloads - dilutes impact 

- Top edge of solar panels (Z Position) less than payload Z 

position 

0 TRANSVERSE BOOM 

- Major Contamination sources and payloads are much closer to each 
other 

- Solar panels and radiators obstruct viewing 
- Leakage near payloads 

84 



- RCS near payloads 
- Return flux of outgassed materials to payload surfaces greater 

- Background glow much more available to be within field-of-view 

or intercept field-of-view 

- Spatially and temporally more variable 

- Shuttle is closer to payloads during manuevers 
- Ionized specie concentration potential is greater - affects some 

payloads detrimentally while neutrals do not 

Table 5 . 3 . 2  - Preliminary Results of Transverse Boom Trade 
Leakage from pressurized modules approaches column density 

requirements limit for a significant portion of payload viewing 

direction 

o 

o Solar panels, concentrators and radiators along boom cause 

significant Ram pressure buildup-eliminates a large volume of 

payload viewing by exceeding column density requirements 

o Venting adds to column densities, payload/vent relative location 

reduces amount of venting that is allowable 

o Return flux/deposition potential greater because of solar panel/ 

module outgassing and relative locations 

Leakage at 5 lbs/day approaches 10" mol/cm2 for H20, C02, 

at locations along boom (out to 15 meters from center) looking 

along Z and areas aft 

- Impacts most phase 1A experiments 

- Opinion is leakage flow rate of 5 lbs/day for all pressurized 

modules is not reasonable ( too low) 

- Skylab spec was 14.7 lb/day and actually showed near 7.51bs. 

o 
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0 

0 

0 

5.3.2 

- Shuttle spec is at 6.5 lbs/day 
- Feel that greater than 5 lbs/day per module is closer to 

reality - especially as seals deteriorate 

Ram pressure on solar panels shows that viewing between 30 and 60 

degrees off of Z towards X and 30 to 70 degrees off of X towards 

Y (into the ram direction) exceeds acceptable column densities 

Venting at 5 lbs/day exceeds column density requirements for 

lines-of-sight looking aft at 60-70 degrees off of Z axis 

Further analysis required 

- Updates of the above 

- RCS (Resistojets) 

- Shuttle Rendezvous 

- Wake Region Densities 
- Surface and Far Field Glow Potential 
- Leakage rate assessment (major impact) 
Leakaee as a Contaminant Source 

The alternate rephased space station configuration places the 

instrument payloads in close proximity to the habitation modules (see Fig. 

5.3.1). Consequently, concern exists with regards to the leakage from the 

habitation modules as a source of contamination. In efforts to obtain 

order of magnitude values, a first look model was developed. The modules 

were simulated using a rectangle with an area approximately equal to the 

projected area of the modules. lbs./day for 

the entire habitation volume, a pseudo surface emission rate for one side 

Based on a leakage rate of 5 

of the rectangle was given a rate of 1 . 0 8 ~ 1 0 ~ ~  molecules/cm 2 /sec. This 

rate assumes an average molecular weight of 28gm/mole for the escaping gas 

The velocity of the escaping molecules was calculated to be 3 . 1 6 ~ 1 0 ~  
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cm/sec at its effective aperture. This calculation was based on a cabin 

temperature of 293°K at 1 atmosphere and an average ratio of specific heat 

for the escaping gas of 1.35. The molecular number density due to leakage 

was calculated to a matrix of volumes above the simulated modules. 

Numerous lines-of-sight orginating from points along the truss were 

determined. Density integrations were computed along each line-of-sight to 

obtain corresponding number column densities. Figures 5.3.2 and 5.3.3 

show the origin and direction for 28 lines-of-sight. Figures 5.3.4 and 

5.3.5 show the calculated number column density corresponding to each 

line-of-sight. A l s o  shown are the calculated number column densities 

based on a more realistic leakage rate of 5 lbs./module/day. 

5.3.3 Ventine Analysis 

Another contamination source which required modeling was the 

habitation module waste vent. The vent was placed at the end of the 

habitation modules furthest from the truss corresponding to a distance of 

about 20 meters from the truss centerline. This geometry was modeled as 

shown in Fig. 5.3.6. Molecular number densities were calculated for a 

matrix of volumes in the vent plume. Lines-of-sight from two origin points 

were determined as shown in Figures 5.3.7 and 5.3.8. Both line-of-sight 

origins represent points along the truss where instruments could be 

located. Integration of the density along each line-of-sight was performed 

to compute the corresponding number column density. The computed number 

column densities are shown in Figure 5.3.7, 5.3.8 and 5.3.9. 
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5.3.4 Ram Pressure on Reconfinred Solar Panels 

The alternate rephased space station configuration places the 

payload instruments much closer to the solar panels than in the dual keel 

configuration. Figure 5.3.10 shows geometric orientation of the solar 

panels relative to the truss on which the payload instruments will be 

mounted. The Ram density buildup above the solar panel was calculated 

assuming a Ram direction vector normal to the plane of the solar panel. 

Lines-of-sight were determined for several representative instrument 

locations on the truss as depicted in Figure 5.3.10. The integrated 

number column densities were computed for the lines-of-sight and are listed 

in Figure 5.3.11. It can be seen from the results that there may be 

rather large regions in an instruments field-of-view which are unusable 

due to excessive number column densities from Ram density buildup. 

5.3.5 Presentationshfeetines 

For the rephased space station action items/trades two meetings 

were most important. 

o NASA Headquarters, 17 Sept 8 6 ,  on transverse boom versus dual keel 

impact on contamination. 

Richard Sade 

John Hilchey 

Aronld Nicogossian 

Mike Davarian 

Gary Musgrave 

Attendees from NASA/MATSCO were: 

Larry Chambers 

0 NASA Headquarters, 22 September 1986, on transverse boom versus 

dual keel impact on contamination. Atendees from NASA/MATSCO were: 

Dick Halpern 
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Mike Davarian 

Sam Keller 

Gary Musgrave 

David Black 

Fritz Von Bun 

Ray Gause 

Lubert Leger 

Horst Ehlers 

Ed Reeves 

Mark S i s t i l l i  

Larry Chambers 



I 

n 
0) c m 
4 a 
4 aJ 
d 
RJ a 
k 
RJ 
I+ 
0 rn 

v-4 
0 

U 
7 
0 

t-. 
v- I aJ > 
*ri 
4J 
U 
aJ 
P 4  

v) 
aJ 
k 

0 
c* 1 

a 
d 
(d 

v 

0 

0 
2 
U 
(d 

PJ 

v) 
0 
4 
aJ 
3 
0 
.O 
(d 

W 

m 
v) 
0 
cl 

a 
W rn 
U 
2: a w 
M 

z 
U a 
M 
U 
J 
s1 

k 
I 

n 
J 
H 
3 

w 
M 
3 rn m w 
M a 

m 

5 
fz 

99 



0 
0 3 0 0 2 0 m 

2 
2 
K 
c\I 

l-i 
s 

0 m 
m 
U 

0 a 

l-4 w z 
U a 
fx e c-l 

5: 
I 



6.0 CONTAMINATION GUIDELINES FOR SPACE STATION PAYLOADS 

This section is intended to aid designers and scientists in 

avoiding pitfalls that may lead t o  contamination problems during the 

design, testing, assembly, storage and transportation of a payload. A 

large part of the information was derived from Dr. Ray Gause, NASA, MSFC 

who has had a great deal of first hand experience with payload/experiment 

contamination problems and abatement procedures. 

6.1 DESIGN 

The experiment design should be performed with the idea in mind 

that final cleanup or sealing can be made at any stage of assembly in case 

a contamination problem occurs. Disassemble capability at any stage is a 

desirable feature for required cleaning. Also the design should consider 

the lifetime, space platform specifics, and the induced atmosphere of the 

payload and the platform which is the source of contaminants. 

If EVA servicing or retrieval is required the design needs t o  

allow required protection during on site servicing and retrieval. For 

servicing in the service bay or pressurized clean room, the payload 

components that are refurbished must be capable of being cleaned in these 

environments or handled in a manner which does not allow contamination to 

occur. 

If the subassembly testing and integration is completed utilizing 

be the guidelines below, the chance of a serious contamination problem can 

minimized. 

6 . 2  MATERIALS SELECTION 

The materials used for an experiment are primarily selected for 

At the same time 

especially when they 

their optical properties or thermal 

the outgassing of these materials must be considered, 

control capability. 
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have a direct view to critical optical/detector components. The resistance 

or exposure to the atomic oxygen that is present at low earth orbit is 

another consideration. 

Resistance to impacts by man made orbital debris should also be 

considered. Approximately 400 particles per meter2 per year are 

predicted to impact windward facing surfaces. The particles range from 

0.01 to 0.5 mm diameter and will have high relative velocities. 

6.2.1 Mass Loss Characteristics 

One of the common screening tests for material contamination 

behavior is the VCM/TML tests. This test procedure holds the sample at 

125°C for 24 hours and measures the total mass loss (TMLJ and volatile 

condensable material(VCM) that collects on a 25°C surface. 

It is possible that even though a material has very low TML or 

VCM it can still be a problem if it has a line-of-sight to critical optics. 

It is recommended for this case that optical witness samples are placed in 

the VCM/TML test and then measured for reflectance or transmission changes 

after the test. Experience has shown that even though the VCM measured is 

well below acceptable levels (<0.1%) that witness samples show significant 

degradation at 1216A (i. e. 60-90% degradation ) . 

If a material that shows degradation of the optics is still 

required because of its unique properties, it should be baked out in a 

thermal vacuum chamber until it reaches acceptable levels. 

6.2.2 Atomic Oxveen Eff ectg 

The exposure to atomic oxygen of susceptible materials has two 

major impacts. First the material may be reduced in thickness so that it 

does not perform its function (i.e. mirror coatings) or secondly, its 

optical/thermal properties are modified. 
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The data from flight tests shows that diffuse surfaces become 

more diffuse and specular surfaces become diffuse. Most of this data was 

taken during 40 hour exposure periods to varying integrated fluxes of 

atomic oxygen. be estimated by 

determining the total fluence to which the surfaces will be exposed. 

Long term exposure could be worse and can 

Flight data also shows that surfaces not exposed to direct flux 

flux of ambient of atomic oxygen can degrade by received surface scattered 

atmosphere. 

The degradation and/or mass loss of non metallics is discussed in 

section 2.7 and 2.8 for atomic oxygen. 

6.3 ASSEMBLY/BUILDUP PROCESS 

This section discusses the multitude of considerations that must 

be made for assembly of the experiment hardware and associated handling and 

testing. This process control can be maintained during the buildup or 

achieved by cleaning later. The choice will be a function of the design 

and experiment type and sensitivity. 

6.3.1. Surface Cleanliness As A Function Of Time And Air Cleanliness 

6.3.1.1 Introduction 

In the field of contamination control there are two primary 

documents which are used as reference for cleanliness definition. The 

first document is the Federal Standard No. 209B which defines the 

requirements for clean room and work station controlled environments. In 

particular, Fed. Std. No. 209B provides standardization of definitions and 

air cleanliness classes for clean rooms and clean work stations. The 

second document is the Military Standard 1246A which provides a 

standardized definition for surface cleanliness levels. The problem with 
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these two documents is that each is a stand alone document, and while they 

do not contradict each other, neither provides any basis or relationship 

for determining surface cleanliness as a function of air cleanliness class 

or vice versa. From the practical stand point of a contamination control 

engineer, the relationship between air cleanliness classes and surface 

cleanliness levels is very important. This relationship would allow the 

engineer to predict surface cleanliness levels by knowing the air 

cleanliness class and time that a particular surface was exposed to that 

cleanliness class. 

6.3.1.2 Air Cleanliness Classes 

Federal Standard no. 209B defines air cleanliness in terms of the 

number of particles greater than 0.5 microns in diameter in one cubic foot. 

Consequently, an air cleanliness class of 100 would imply 100 particles 

>0.5 microns per cubic foot. Although any air cleanliness class could be 

defined in this manner, only three classes are generally used, namely 

classes 100, 10000, and 100000. The particle size distribution can be 

approximately described by: 

log n - 2.173 log D - 0.654 + xc Eq. 1 

where, 

n - Number of particles/ft3 with diameters >D - Diameters 
of particles in microns 

Xc-Clean room air cleanliness level (class) 

Figure 6.1 is taken from Fed. Std. 209B and shows graphically the particle 

distributions for classes 100, 1000, 100000. 
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FIGURE 6.1 

+ 
Counts below 10 (0.35) particles per cubic loot 
( l i ter)  a re  unreliable except when a large number 
of samplings is taken. 

PARTICLE S I Z E  DISTRIBUTION CURVES. 
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Eq. 2 

6.3.1.3 Surface Cleanliness Levels 

Military Standard 1246A defines surface cleanliness in terms of the 

largest particle in a particle distribution which is defined by the 

equation. 

log n - 0.9260 (log2X1-log2X) 
where, 

n - Number of particles per square foot 
X - Particle size in microns 
X1- Cleanliness level 

Figure 6.2 is taken from Mil-Std-1246A and shows graphically the surface 

particle distributions for surface cleanliness levels 10 through 2000. As 

an example, a surface cleanliness level of 500 would indicate a particle 

distribution as depicted by the 500 line in Figure 6.2 with only one 

particle of 500 microns in diameter, but as many as 5,564,000 particles 

greater than 1 micron and less than 500 microns per square foot. 

6.3.1.4 Fallout Rates 

Otto Hamberg3had derived a fallout rate equation based on the 

compilation of many sources of data. The equation is as follows: 

Eq. 3 n - (2.851 x 103x Nc 0-773) 
where, 

n - Fallout rate, number of particles >5 microns settled/ 
ft2/24 hr . 

3 Nc - Air cleanliness, number of particles >5 microns/ft 
of air. Notice that the fallout rate is a function of air cleanliness as 

defined in Fed. Std. 209B. The rate equation is based on average 
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cleanrooms with 15 to 20 changes per hour. Cleanrooms with air exchange 

rates either less than or greater than those stated above require the 

calculated fallout rates to be adjusted. 

6.3.1.5 Cleanliness Level as a Function OF Cleanroom Class and Time 

By simple comparison of equations 1 and 2, it becomes obvious that I 

I 

the particle distribution used by Fed. Std. 209B for air volumes is much 

different than the particle distribution used by Mil-Std-1246A for surface 

areas. Assuming both distributions are correct for their respective locals 

(i.e., air volume v s .  surface), it is possible to calculate surface 

cleanliness levels as a function of time and cleanroom class. Equation 1 

I 
I 

1 

I 
I 

i can be solved for the number of particles n with D - 5 microns. This 

operation yields: 
I 

Eq. 4 I I 10(-2.173 + l og  Xc) 

where, 

n = Number of airborne particles >5 microns 

Xc - Cleanroom class per Fed. Std. 209B 
The value n in equation 4 

obtain a fallout rate n. - (2.851 x lo3) x Nc 0.773 
where, 

can now be substituted for Nc in equation 3 to 

Eq. 5 

NC - 1.0(-*.173 x l og  Xc) 

n = Fallout rate (particles/ft2/24 hr.) 

(particles) 

Equation 2 can be solved for the cleanliness level, XI yielding: 

X I  = 10 

where, 

Ns - Number of particles 
X - Particle size in microns 
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XI - Cleanliness level 
For particles sizes greater than 5 microns, and for Ns- n x t (n from 

equation 6) the cleanliness level, XI becomes: 

XI - 10 
where, 

XI - Cleanliness level (per Mil-Stc 
t - time in days 
n - (2.851 x lo3) x Nc 0.773 

for, 

I 10 (-2.173 + log Xc) 
NC 

where , 

Eq. 7 

* 1246A) 

X, - Cleanroom class (per Fed. STd. 209B) 
The result of the application of equation 7 6.3 and 6.4. 

Fig. 6.3 shows the plot of surface cleanliness level versus exposure time 

for surfaces in environments corresponding to cleanroom classes 100, 

10000, and 100000. Fig. 6.4 is the same data as Fig. 6.3 but with the 

exposure time (x- axis) plotted on a logarithmic scale. 

6.3.1.6 Use of Plots 

is shown in Fig. 

From the information given in Fig. 6.3 and 6.4 it is possible to 

determine the surface cleanliness level (per Mil.-Std.-1246A) degradation 

as a function of time in a given environmental cleanliness class (per Fed. 

Std. 209B). For example, if a surface was determined to be at a surface 

cleanliness level of 300, how long could the surface be exposed to a class 

10000 environment before it degraded to a cleanliness level of 600. From 

Fig. 6.3 the surface cleanliness level 300 occurs at 1.5 days for a 

perfectly clean surface in a class 10000 environment. The surface 
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cleanliness level 600 occurs at 70 days. Consequently, a surface at 

cleanliness level 300 would take 68.5 days to deteriorate to a surface 

cleanliness level 600 if kept in a class 10000 environment. 

6 . 3 . 2  Subassemblv Bakeout 

By baking sub elements prior to final assembly, the risk of having 

an insurmountable or catastrophic problem during final assembly can be 

reduced or eliminated. This process should be ideally carried out until 

the optics are in place. 

Materials such as painted structures, baffles and multilayer 

insulation should be baked out at the highest level possible. The 

temperature should be in excess of predicted flight temperatures. 

An approach used by Dr. Ray Gause, MSFC on Space Telescope 

subcomponents is to hold their temperature at 10°C above final test 

temperature and a TQCM at -10°C which is positioned at distances comparable 

to critical surfaces when finally assembled. The criteria is that the 

TQCM level must reach 1.5 x lO-’g cm*/hr or 1 HZ/hr when averaged 

24  hours. Witness samples are covered and held at a high temperature near 

that of the subassembly until the TQCM reaches the deposition rate 

criteria. One criteria 

for the witness samples is a 3% change in the reflectance at say 1216 

angstroms after the exposure. The actual criteria to be used is a 

function of the payload viewing spectrum and allowable degradation. 

6.3.3 Acoustic Cleaning 

over 

Then they are cooled and exposed for 24-36 hours. 

Acoustic cleaning is used to remove particles from crevices and 

A cleaned nylon bristle brush and a hard to reach places such as baffles. 

black light can be used to verify surface cleanliness. 
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This process is important so that particles are not released into 

the optical system during the systems vibration test or during launch 

vibration. 

The full up systems vibration test should be followed by a tape 

lift method or some other particulate optical test to verify cleanliness 

6 . 3 . 4  Cleanliness Verification/ComDliance ReDorting 

There are hardware installation operations prior to which must 

comply with specific cleanliness levels. For example, to determine the 

presence of particulate contamination 5 microns and larger a tape lift 

method which is currently being evaluated by an ASTM committee should be 

incorporated. Optical witness samples should be used to determine the 

exposure of optical surfaces to molecular contamination. The verification 

and sign off must be completed prior to installation. The following 

sections indicate the forms that may be used for the verification process 

and for procedures related to the production flow. 

6 . 3 . 4 . 1  Hardware AcceDtance 

This form is an example of the documentation for the cleanliness 

It should be approved by flight assurance personnel. verification process. 

Figure 6 . 5  is a sample form to document the hardware acceptance criteria. 

6 . 3 . 4 . 2  Inteeration Work Order 

This form is intended as a tracking/approval mechanism for the 

various hardware installation activities. The approval to commence with 

the requested action will be required by flight assurance personnel. In 

addition, of the action. 

Figure 6 . 6  is an example of the form to document the numerous tasks 

required for hardware integration. 

verification will be required at the completion 

113 



CONTAMNATION LEVEL PROCEDURE/VERIF’ICATION DOCUNENTATION 

I I A R D W A R E ACCE I’T A N C E 

DATE : 

1. ITEM: 

2.  INTERFACES : 

3 .  IMPOSED CLEANLINESS LEVEL REQUIREMENTS: 

4 .  CLEANING TECHNIQUE UTILIZED TO REACH APPROVED LEVEL I F  REQUIRED: 

5 .  SURFACE CLEANLINESS LEVEL MEASURED: 

L o c a t i o n  

6 .  MEASUREMENT TECHNIQUE EMPLOYED: 

7.  DATE OF MEASUREMENT: 

8. STORAGE ENVIRONMENT SINCE NEASUREMENT: 

9. IIARDWARE ITEM REPRESENTATIVE SIGNATURE 

10. SYSTEhl ENGINEERING APPROVAL SIGNATURE 

M e a s u r e m e n t  

DATE 

DATE 

F i g u r e  6.5 
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CONTAMINATION LEVEL PROCEDURE/VERIFICATION DOCUMENTATION 

INTEGRATION WORK ORDER 

DATE : 

1. ACTION: 

2 .  INTERFACES: 

3.  CONTAMINATION CONTROL TECHNIQUES TO BE IMPLEMENTED ( i f  app l i cab le )  : 

4 .  CONTAMINATION CONTROL PLAN REFERENCE: 

5. PERSONNEL PERFORMING ACTION: 

6 .  APPROVAL TO COMMENCE ACTION, SYSTEM ENGINEERING 

DATE 

7. VERIFICATION ACTION COMPLETED SATISFACTORILY, SYSTEM ENGINEERING 

F i g u r e  6.6 
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6 . 3 . 4 . 3  Variance or Violation Report 

This form can be used when a variance is necessary from a planned 

requirement or when a violation has occurred that may have an impact on the 

rest of the system elements or requires corrective action. For example, 

variances may occur when a particular: required cleaning procedure does not 

apply to a specific hardware item or when storage requirements cannot be 

met. A violation may occur when a particle count of room air is very high, 

or an accidental spill occurs. The example form is shown in Figure 6.7. 

6 . 4  FINAL ASSEMBLY 

Final assembly should be completed in a clean room environment 

that is monitored for particulate and molecular deposition near critical 

areas. 

The final assembly should be verified of its cleanliness level 

prior to system acoustic or thermal vacuum testing. 

GSE equipment used in conjunction with flight hardware in a 

vacuum chamber should be baked out to the same criteria as flight hardware. 

This says the GSE equipment should be baked out at least 10°C above the GSE 

equipment temperature reached during testing with flight hardware. 

Before final thermal vacuum testing the vacuum chamber and GSE 

equipment should be certified as to their cleanliness level. For the 

thermal vacuum chamber this may require a pump down and heating cycle with 

witness samples and a TQCM for verification prior to flight hardware 

testing. 
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6.5 SYSTEMS TESTING CONTAMINATION MONITORING 

Monitoring of particulates and the non-volatile residues is 

requi,red during the different phases of configured system testing. The 

frequency of measurements should be such that an assessment of surface 

cleanliness levels can be made. Periods of high, anomalous or unacceptable 

levels should be reported and corrective actions taken: Figure 6.7 is an 

example of a form which could be used for violations or variance requests. 

Periodic inspections should be made to allow required cleaning or 

corrective actions to be implemented. 

The types of monitoring for the different environments include,but 

are not limited to: 

6.5.1 Thermal Vacuum Chamber 

Particulate and NVR monitoring is required during certification 

and testing. Additionally, TQCM's are to be used under vacuum test 

conditions. Real time monitors, witness plates, wipe procedures, cryogenic 

cold fingers may be utilized as required. 

Fig. 6.8 is a sample form to be used as a summary for readings and 

time notation for thermal vacuum chamber contamination monitoring summary. 

6.5.2 Acoustic Testing 

During acoustic testing the configured system and associated 

hardware may be double bagged. In this way the external bag can be removed 

if it is heavily contaminated, leaving a cleaner inner cover for removal 

from the chamber. To determine the potential of particulate transfer to 

the configured system during cover removal or penetration, the particulate 

atmosphere should be monitored just before the test commences and 

immediately after. In addition, witness plates inside the cover on or near I 
I 
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CONTAMINATION LEVEL PROCEDURE/VERIFICATION DOCUMENTATION 

VARIANCE OR VIOLATION REPORT 

DATE : 

1. VARIANCE REQUEST OR VIOLATION REPORT: 

2. ITEMS / ACTION INVOLVED : 

3 .  

4 .  

REPORTING PERSONNEL: 

V A R I A N C E  APPROVAL: I f  appl icable  

DATE 

5. CONTAMINATION IMPACT: 

6. CORRECTIVE ACTIONS REQUIRED: 

Figure 6 . 7  
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F i g u r e  6.8 
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THERMAL VACUUM CHAMBER CONTAMNA’I’IUN I’WNI’l’OKING SurlriART (con t i  n u e d  J 

_____-- ___ -7. -- 
2 .  C o n t i n u e d  I i I 1 .  i I 

3 .  C o n t i n u e d  I I I I I I 

4 .  C o n t i n u e d  I I I I I I 

5. C o n t i n u e d  . I I I I I I 

- --- 

--- _ _ _ _  -- __ _ _  - ~~- - - -  

~ - -___ 

- 

- 

-___ ___ 

6. C o n t i n u e d  I I I I I I 
--____ - -- - 

7.  C o n t i n u e d  I I I I I I 

I 

I 

I 

I 
I 

I 

I 

I 

1 

Figure 6 . 8  (continued) 
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the configured system should be utilized if particulates did 

migrate during the test. Fig. 6.9 is a sample form to record the 

contamination monitor results in a summary fashion for the acoustic test. 

6.6 STORAGE/TRANSPORTATION ENVIRONMENT MONITORING 

to determine 

The monitoring/reporting of the environment and surfaces f o r  

hardware is required to document the cleanliness levels of the configured 

system and associated hardware at various times during the location. 

Fig. 6.10 is a sample report form for the air class levels 

measured by particle count systems. 

Fig. 6.11 is a sample report form for tape lift measurements to 

determine surface cleanliness levels. 

Fig. 6.12 is a sample report form for non-volatile residue (NVR) 

measurements of surface cleanliness. 

6.7 GENERAL PRACTXCES/PROCEDURES 

This section contains general guidelines to minimize contamination 

potential of flight hardware components. It is not intended to be all 

inclusive but rather to create an awareness of the range of precautions one 

must consider . 
Personnel should be briefed or trained on all aspects of 

contamination control and procedures. 

No smoking, eating or drinking around flight hardware 

Maintain protective covers in critical areas at all times, control 

access and cleanliness levels during penetration of these covers 

All bolt holes/penetrations, that are not used, must be sealed 

with an approved material to negate the possiblity of particles 

emitting from these cavities. 
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ACOUSTIC CHAMBER CONTAMINATION MONITORING SUMMARY 

1. REPORT DATE: SUBM1'I"I'TED BY: 

2- - TEST TITLE/DESCRIPTION : 

/ I / 3-  - TEST ARTICLE INSTALLATION PERIOD : TIME/DATE I r 
-7 l  A i r  class m e a s u r e m e n t s  

-- I 

4 . h ~ ~  / I / CLOSED PERIOD: 1 
Air class m e a s u r e m e n t s  

5. - TEST COMPLETED PERIOD: 

Air class m e a s u r e m e n t s  P TIME/DATE 

I I t 
6 .  WITNESS PLATE(S) SURFACE CLASS: 

L o c a t i o n  S u r f a c e  class 

7 .  

~~ 

TEST ARTICLE SURFACE CLASS AFTER TEST - --- 

8 

( i f  r e q u i r e d )  

L o c a t i o n  S u r f a c e  C l a s s  

ACTIONS REQUIRED: 

FIGURE 6.9 
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A I R  CLEANLINESS LEVEL REPORT FOD1 

REPORTED BY: EXT : DATE: 

SUBJECT: 

LOCATION : 

SAMPLE DATE/TIME : * 

TEMPERATURE: O F  , RELATIVE HUMIDITY % 

DEW POINT: 

ACTIVITY: 

A I R  CLASS: 

REMARKS : 

CORRECTIVE ACTIONS: 

SIGNATURE: DATE 

A I R  CLEANLINESS LEVEL REPORT FORM - 
REPORTED BY: EXT : DATE: 

SUBJECT: 

LOCATION : 

SAMPLE DATE/TIME: * 

TEMPERATURE: O F  , RELATIVE IIUMIDITY % 

DEW POINT: 

ACTIVITY: 

A I R  CLASS: 

REMARKS : 

CORRECI'IVE ACTIONS: 

SIGNATURE: DATE : 

FIGURE 6.10 
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TAPE SAMPLE REPORT FORM 

DATE: TEST PERFORMED BY: 

PARTICLE SIZE 
MICRONS 

5 - 15~- 
16 - 35 
36 - 75 
76 - 1 0 0  

151 - 200- 
201 - 3 0 0 y  
301 - 400 
401 - 750 
751 - 1 2 5 0  

1251 - 2000 

# OF LOCATION OF TAPE 
PARTICLES DESCRIPTION OF PARTICLES SAbiPLE 

CLEANLINESS LEVEL = 

CORRECrIVE ACTIONS : 

TAPE SAMPLE REPORT FORM - - 
DATE: TEST PERFORMED BY: 

PARTICLE SIZE # OF LOCA'I'ION OF TAPE 
MICRONS PARTICLES DESCRIPTION OF PARTICLES SAMPLE 

5 - 15 
16 - 35 
36 - 75 
76 - 150 

151 - 200 
201 - 300 
301 - 400 
401 - 750 I 
751 - 1250 

1251 - 2000 I 

CLEANLINESS LEVEL = 

CORRECI'IVE ACTIONS : 

FIGURE 6.11 
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NON VOLATILE RESIDUE REPORT FORM 

DATE : 'TASK PERFOPJlEl) BY: - 

HARDWARE I 'm :  

LOCATION (S)  : 

~~ ~ ~~~ 

SAFIPLE DATE/'l'IME: 9 

TEST METHOD UTILIZED: 

NVR : AREA SAF.1PLEI) 

REPIARKS : 

CORRECTIVE ACTIONS: 

NUN VOLATILE RESIDUE REPORT FOREi 

DATE: TEST PERFORIED BY: 

HARDWARE ITEM: 

LOCATIONS(S): 

SAMPLE DATE/TIME: * 

TEST METHOD UTILIZED: 

NVR: AREA SAIlPLEI) 

REI.1ARKS : 

X G U R E  6.12 
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During mounting of hardware 

- no cutting oils sould be used 

- use of tools that produce particles (i.e. drills, saws) should 

be used in conjunction with a vacuum 

- drilled holes should be deburred and vacuumed 

- wear gloves when handling thermal baked out components 
Maintain all handling fixtures, GSE and tools in a visibly clean 

condition 

Use only flight qualified materials, select paints, plastics, 

adhesives, lubricants, wire insulation, cable sleeving and other 

non-metallic materials to minimize contamination 

Never assume any item recieved from elsewhere is clean. 

verification from source or verify before use 

Monitor environments constantly 

Question any material, procedure or hardware you are not sure of 

Establish a documented verification system for all assembly 

procedures and testing. 

Ask for 
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7 . O  CONCLUSIONS/RECOMMENDATIONS 

After updating the contamination requirements document and 

presenting the results of the trade studies to OSSA CODE E, it became 

apparent more detail of degradation of optical systems is required. This 

is especially true for the effect of number column density that resides in 

the field-of view of the instruments. For each molecular and atomic specie 

the absorption, scattering and emissions at all wavelengths must be 

determined. In this way a predicted number column density can be stated in 

terms of spectral signal loss  or background brightness increase. These 

predicted signal changes, relative to an undisturbed background, can be 

compared to each experiment allowable signal degradation as determined by 

the principal investigator and his staff. 

This is not an easy task, especially for emissions, because of the 

number of excitation mechanisms and their variability throughout a complete 

orbit and from orbit to orbit. 

Preliminary comparisons of the transverse boom configuration to 

the dual keel showed that the transverse boom is more of a contamination 

problem. This results from the positioning of payloads near the major 

contamination sources of leakage, RCS and the relative position of large 

solar arrays and radiators. Clearly the dual keel is the preferred 

configuration of the two options. 

The venting studies showed that a region 1 and region 2 concept 

for allowable vent contributions is not a good concept because of the 

uncertainty in vent plume distributions and configuration changes of the 

space station requires redefinition of the different regions. 
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It appears that some low level of continuous venting may be 

allowable and not exceed the column density requirements. However, until 

the actual spectral degradation of the contaminants is established this 

rate is not clear. Another issue that may restrict venting at any flow 

rate, is the impact of the gases on the near plasma environment of the 

Space Station. 

Another important conclusion is that the majority of the payload 

personnel contacted during this study are not well aware of contamination 

and its potential impact. There are notable exceptions, but in general, 

allowable limits of deposition and number column densities were unknown. 

Also, the effects of atomic oxygen erosion and orbital debris appeared to 

be a surprise to most contacts that were made. For these reasons the final 

report was structured to contain, as much as possible, sections that should 

aid in developing an awareness of contamination and its potential impact. 

During the space station development it is recommended that a 

space station Users Contamination Handbook or Guide be developed so that 

all personnel will use proper approaches and criteria. Sections 2 and 6 of 

this report are preliminary beginnings of such a handbook. After detailed 

analysis of space station environments, the data for such a handbook would 

increase substantially. 
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